

���������	
������������	
������������	
������������	
���

� � � �� � � �� � � �� � � �

� � � � � � � � � � � � � ! " # $ % & ' (�� � � � � � � � � � � � � ! " # $ % & ' (�� � � � � � � � � � � � � ! " # $ % & ' (�� � � � � � � � � � � � � ! " # $ % & ' (�

) *) *) *) * + + + + ����

The Study of VoIP on Unreliable Transport Protocols

with Congestion Control

, - . /, - . /, - . /, - . / 00001 2 3 4 �1 2 3 4 �1 2 3 4 �1 2 3 4 �

�5�5�5�5 00006 7 86 7 86 7 86 7 8

9 : ; �9 : ; �9 : ; �9 : ; �< = >< = >< = >< = > ???? @ A@ A@ A@ A

 I

BBBBCCCC

��������	
� � � � � �� � �� � � � � � � � � �� � !

��" # $ % &
' (� � � �� �
) � � $ * + , - . / 0 1
2 3 4 � � 5 +

$ 6 7 � 8 9 �: ; < = * �> ?
) � @ A B C
D E F G H I J �K L �M N

O�

P Q
� � � R � S T � U V W X T Y F N ���Z [\] _̂ P L ` a b �c

d $ e
2 � � � f 7 g h i
j i �k � l m < n o �p Q q � � �
� r �+

k s � t u n o �v w x y T $ z { | a } ~ � � $ w �� M
� � t � � � �� �

$ e
� � � � �� � $ e
� � � ~ �� � $ �
; � m � . m � ��� $ �
�

� � ��� T $
t u � �� � T $
� � � � ¡ T $
} ~ ¢ �£ ¤ $ ¥
� �

¦ S § } ¨ © ª « �¬ � $ ¥
 ® ¯ ° ¬ ± $ ¥
188�¬ ² $ ¥
³ - ´ ~ µ z

¶ · ¸ ¹ �Oº $ ¥
� � F » $ e � T̂ $ R $ ¥ w ¼ �� � z { � � �� ½ ¾ J

B ¿ - � � À Á ��S " i Â �

 II

��Ã Ä ÅÆ . µ Ç È É Ê Ë + z Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × È Ø Ù Ú Ï �

Û Ü Ý ÅÞ ² À Á Þ ß u $ à á â ã � ! ä å Å66

æ * i & Å98ç 1è $ » é Åê ë

� ì Åí ¡ î � � � � Å� � � ï ë

9 � D E9 � D E9 � D E9 � D E

ð 9 å » i ñ �� ò
Ò Ó ó ô �õ L z { ö ÷ Ò Ó �ø {
ù ú û � û ü ý þ

�Ò Ó � ¦ ����� @ �
 � � Voice over Internet Protocol (VoIP) ú � 	 � � Ò

ß Ò Ó +
 � �� ¦ Ù S �È � + VoIP� � á � � z User Datagram Protocol

(UDP) �Ê Ë � Ò Ó + È Ø
 � � � � ¼ � @ � � � ¦ S � (Internet Engineering

Task Force (IETF) !ý Ï Ë �Datagram Congestion Control Protocol (DCCP) Ê Ë
�

� ' (Real-time Transport Protocol (RTP) ! � i È Ø � � � � � �2 z Linux + �

LinphoneÒ Ó Ô Õ � � Y �
 � � � ! DCCP U " � ¦ Æ S � � ¦ Session Initiation

Protocol (SIP) �� · # $ % Ò Ó Ô Õ
¯ 7 � Ò Ó + Ð Ñ & � à Õ � ' ��

����������������� � � � 	
 � � �� � � � 	
 � � �� � � � 	
 � � �� � � � 	
 � � � (DCCP)����� � � � �� � � � �� � � � �� � � � � (RTP)����� � � � �� � � � �� � � � �� � � � � (SIP)����
� � � �� � � �� � � �� � � � (VoIP)

 III

Title of Thesis: The Study of VoIP on Unreliable Transport Protocols with

Congestion Control

Name of Institute: Graduate Institute of Communication Engineering,

National Chi Nan University ((Pages: 66

Graduation Time: 01/2009 Degree Conferred: Master

Student Name: Jia-Yu Wang Advisor Name: Quincy Wu

Abstract

(In the digital era, the increase of network bandwidth and the ubiquitous wireless
access facilitates the creation of more and more innovative network services. Among
these services, Voice over Internet Protocol (VoIP) is surely one of the most popular and
successful real-time multimedia services on the Internet. For decades, User Datagram
Protocol (UDP) has been adopted to transport the voice streams of VoIP applications on the
Internet. In this thesis, we presented how the Datagram Congestion Control Protocol
(DCCP), which was recently developed by Internet Engineering Task Force (IETF), can be
utilized by the Real-time Transport Protocol (RTP) to transport real-time audio streams.
Unlike UDP which is a connectionless protocol, DCCP is a connection-oriented protocol
which requires both ends to establish a connection before they can begin sending and
receiving packets. We proposed the design and architecture of a VoIP application running
on DCCP, and take Linphone, an open-source Internet VoIP phone on Linux, as an example
to illustrate how to apply DCCP to establish a bidirectional Session Initiation Protocol (SIP)
communication.

Keyword: DCCP, RTP, SIP, VoIP

 IV

Table of Contents

) � ... I

� � * � .. II

Abstract ...III

Table of Contents .. IV

Figure Index.. VI

Table Index ... VI

1. Motivation..1

2. Background & Related work ..5

2.1 Datagram Congestion Control Protocol (DCCP) ...5

2.2 Session Initial Protocol (SIP) ..9

2.3 Session Description Protocol (SDP)..12

2.4 Real-time Transport Protocol (RTP)..13

3. Application Programming Interface..15

3.1 DCCP stack ..15

3.2 oRTP ..16

3.3 mediastreamer2...17

4. Implementation ..19

4.1 Linphone ..19

4.2 Call Flow of Linphone ..20

4.3 Porting Linphone to DCCP ...23

4.4 Modified Call Flow of Linphone...23

4.5 Wireshark Enhancement ...27

4.5.1 Wireshark..28

 V

4.5.2 SDP Modification for DCCP ...28

4.5.3 Wireshark Modification...30

5. Performance Evaluation ...32

5.1 The Testing Tool ...32

5.2 The Testing Environment ..32

5.3 The Measured Results...33

6. Conclusions and Future work ...35

References ...37

Appendix ...39

Appendix A . Codes of oRTP..39

Appendix B . Codes of mediastreamer2..48

Appendix B . Codes of Wireshark...56

 VI

Figure Index

Figure 1. DCCP Packet Exchange Flowchart ... 6

Figure 2. DCCP Header .. 8

Figure 3. SIP Session Flowchart...10

Figure 4. A SIP Message...11

Figure 5. RTP Header ..13

Figure 6. RTP Payload Types with Corresponding Codecs ...14

Figure 7. System Components of Linphone ...20

Figure 8. Linphone Original Function Call ...21

Figure 9. Implementing DCCP Function Call (1) ..24

Figure 10. Implementing DCCP Function Call (2) ..25

Figure 11. Implementing DCCP Function Call (3) ..26

Figure 14. DCCP Packets Captured by Wireshark ...27

Figure 15. SDP Field for UDP ..29

Figure 16. SDP Field for DCCP ...30

Figure 17. DCCP Packets Captured by the Modified Wireshark..31

Figure 18. DCCP+TCP Network Topology ..33

Figure 19. UDP+TCP Network Topology...34

Table Index

Table 1. Comparison of Transport Protocol ... 2

Table 2. DCCP Packet Types... 8

 VII

Table 3. SDP Fields...12

Table 4. Average Transmission Rate of DCCP+TCP ...33

Table 5. Average Transmission Rate of UDP+TCP..34

 1

1. Motivation

As the recent advancement of Internet technologies, the network applications have

been evolved from text messages delivery like emails, to multimedia applications such as

audio and video messages. Among them, Voice/Video over Internet Protocol (VoIP) is a

technique to deliver audio and video streams through the Internet or any network using

Internet Protocol (IP) technology. Because of its low cost in communication, flexibility for

extension, and brand-new coding/decoding technologies to enhance the voice quality, VoIP

has demonstrated itself as a technology which can potentially compete with traditional

telecommunication services.

There are generally two different modes in delivering multimedia data on the Internet.

That is, the download mode and the streaming mode. For the download mode, it usually

takes a long time (a few minutes or even a few hours) to completely download the

multimedia information, especially when the network only has limited bandwidth.

Therefore, this approach always implies a significant delay before the multimedia session

starts. On the contrary, the streaming mode need not wait for the whole files to be

completely downloaded. The starting delay only takes a few seconds and then the users can

begin listening to or watching the online multimedia audio/video file. Apparently, for users

to listen to a live broadcast program or to participate a video conference through the

network, it is crucial to send and receive streaming media in real time.

In contrast to the real-time multimedia applications which are very sensitive on the

transmission delay, most traditional Internet services we use today, such as the web

browsing and E-mail delivery, utilize Transmission Control Protocol (TCP) as the transport

 2

protocol. TCP adopts mechanisms like flow control and re-transmission. Before the source

node receives the acknowledgment from the destination node, the flow control mechanism

will postpone delivering successive data. Moreover, when there is any packet loss, TCP

will re-transmit the lost packet. All these extra mechanisms will certainly cause longer

delay, which makes TCP inappropriate for real-time multimedia applications. Table 1

shows the comparison between four protocols in the transport layer. Note that both TCP

and the Stream Control Transmission Protocol (SCTP) [11] are reliable transport protocols.

Table 1. Comparison of Transport Protocol

 TCP UDP SCTP DCCP

Reliable O X O X

Connect-oriented O X O O

Congestion Control O X O O

Sequence Number O X O O

Message-oriented X O O O

Currently most Internet real-time applications transport multimedia data with

Real-time Transport Protocol (RTP)[1][2] over User Datagram Protocol (UDP). Compared

with the reliable TCP protocol, UDP is an unreliable transport protocol which can reduce

the communication overhead of connection establishment and re-transmission.

Considering the VoIP application, which delivers an audio packet in every 10-40 ms, a

lightweight protocol like UDP is a better choice. Although UDP does not guarantee that all

audio packets will arrive at the destination, VoIP users can generally tolerate the short

audio interruption caused by the packet loss and ask the other party to repeat the sentence

again. By doing so, users can get the lost information to be “re-transmitted” by

themselves, even though there is no re-transmission mechanism in UDP. Therefore, for the

past decades, multimedia applications such as audio streaming and video conferences

 3

generally use UDP as the transport protocol, instead of a reliable protocol like TCP.

One problem of UDP is that, because it does not employ the congestion control

mechanism. When there is congestion in the network, UDP will not detect that and will

keep on transmitting packets, so it will cause more serious congestion, that finally leads to

congestion collapse [12] in the network. In recent years, the UDP traffic on the Internet

increases dramatically as multimedia applications getting more popular. Take the

application of Internet Telephony as an example. Each audio packet is very small (e.g. 160

bytes), and a packet will be transmitted in every 20 ms, so there will be 50 UDP packets

transmitted in each second. For 1000 users to make phone calls via the network, in a

second there will be 50,000 packets transmitted. Therefore, it can be seen that as

multimedia traffic transported by UDP increases, it would easily lead to congestion in the

network! In view of this, a new transport protocol would be to required which has the

congestion control mechanism that UDP does not have, but this protocol need not be

reliable like TCP because many applications like VoIP do not require their audio streams to

be re-transmitted in case of packet loss.

The Datagram Congestion Control Protocol (DCCP)[4] was recently developed by

Internet Engineering Task Force (IETF) for this purpose. It is not a reliable protocol, but

it supports congestion control, which make it a good choice to replace UDP as the transport

protocol for multimedia traffic. However, it is not straightforward to revise an application

running on UDP to be transported by DCCP. Because UDP is connectionless, while

DCCP is connection-oriented, the programming style and communication model is totally

different. In this thesis, we shall study the model in converting a connectionless

communication model to a connection-oriented model, and utilize a VoIP application as an

example to illustrate how this can be done.

The remaining of this article is organized as follows. Section 2 will briefly introduce

 4

some protocols, including the DCCP connection establishment and termination and data

delivery, and have an overview of DCCP packet types. Moreover, the basic principles of

the Session Initiation Protocol (SIP)[3], Session Description Protocol (SDP)[17][18] and

Real-time Transport Protocol (RTP) will also be described. Section 3 will describe the

Application Programming Interface (API) of DCCP communication.

Section 4 will illustrate the software architecture and design which we proposed to

transport VoIP applications on DCCP and introduce an open-source Internet phone

Linphone, which we took as an example to illustrate the process for porting a VoIP

application which was running on UDP to utilize DCCP as the transport protocol.

Furthermore, we will illustrate how an open-source network protocol analyzer software

Wireshark[16] can be modified to analyze RTP packets over DCCP. Section 5 will evaluate

the DCCP performance, focusing on how DCCP flows affect TCP flows and how UDP

flows affect TCP flows. Finally, Section 6 concludes our work and addresses some possible

future works.

 5

2. Background & Related work

2.1 Datagram Congestion Control Protocol (DCCP)

In this section we will introduce the connection initiation and termination in DCCP

and the data delivery, and explain the packet types used with the connection flow.

Datagram Congestion Control Protocol (DCCP) is a new Layer 4 protocol proposed by

Internet Engineering Task Force (IETF) and its main purpose is to replace UDP in

transporting multimedia streaming data. Similar to UDP, DCCP is an unreliable

transmission protocol with no in-order delivery or re-transmission mechanisms.

Therefore, it is appropriate for real-time multimedia applications. DCCP transmission

model is connection-oriented. The connection can be initiated or terminated by both ends.

Each DCCP packet contains a Sequence Number so that any packet loss can be detected.

The major difference between DCCP and UDP is that, it can detect the congestion in the

network and activate the congestion control mechanism to prevent the hosts from sending

more packets which worsen the network situation. In addition, to support the divergent

need of different applications, DCCP can work with different congestion control

algorithms. Currently DCCP provides two kinds of congestion control algorithms, which

are identified as CCID2 (TCP-Like Congestion Control) [5] and CCID3 (TCP-Friendly

Rate Control) [6]. According to its characteristic, DCCP is appropriate for multimedia

applications like video streaming, audio streaming and Internet telephony.

 6

Client S er v er
(1) I n i t i a t i o n

(2) D a t a t r a n s f e r

(3) T e r m i n a t i o n

1.D C C P -R e q u e s t

2.D C C P -R e s p o n s e
3.D C C P -A c k

4.D C C P -D a t a , D C C P -D a t a A c k
5.D C C P -A c k

6.D C C P -C l o s e R e q
7.D C C P -C l o s e
8.D C C P -R e s e t

Figure 1. DCCP Packet Exchange Flowchart

The DCCP connection flow is similar to TCP. It is divided into three states: Initiation,

Data transfer, and Termination. Suppose a host (Client) wants to establish a DCCP

connection to another host (Server). Figure 1 shows the flow of connection initiation and

termination in DCCP and data delivery. It contains the following steps:

1. The Client sends a DCCP-Request packet to the Server, indicating it would like to

initiate a connection. This request will make the system to enter an “Initiation” state

and activate a process of a three-way handshake.

2. After the Server receives the packet, it will send a DCCP-Response message back to

the Client in response.

3. After the Client receives the DCCP-Response it will send a DCCP-Ack message to

 7

acknowledge the connection establishment. Now the connection between the Client

and the Server is successfully established. The system transits to the “Data transfer”

state and data delivery can start.

4. During the data transfer, the Client sends DCCP-Data packets or DCCP-DataAck

packets to the Server.

5. After the Server receives the packet, it will send a DCCP-Ack message to the Client.

6. When the Server wants to terminate the connection, it will send a DCCP-CloseReq

packet to the Client, which initiated the connection. If it is the Client that wants to

terminate the connection, Step 6 is ignored and the action in Step 7 is executed

directly.

7. After the Client receives the DCCP-CloseReq request, it will send a DCCP-Close

packet to the Server. (If it is the Client which wants to terminate this connection, it

will send the DCCP-Close packet directly.)

8. After the Server receives the DCCP-Close packet, it will reply a DCCP-Reset packet

and close the DCCP connection.

 8

Table 2 lists the ten DCCP packet types mentioned above and their behaviors.

 9

Table 2. DCCP Packet Types

Packet Types Explanation

DCCP-Request Sent by the client to initiate a connection.

DCCP-Response Sent by the server in response to a DCCP-Request.

DCCP-Data Used to transmit application data.

DCCP-Ack Used to transmit pure acknowledgements.

DCCP-DataAck Used to transmit application data with piggybacked

acknowledgement information.

DCCP-CloseReq Sent by the server to request the client to close the connection.

DCCP-Close Used by the client to close the connection.

DCCP-Reset Used to terminate the connection, either normally or abnormally.

DCCP-Sync Used to resynchronize sequence numbers after large bursts of loss.

DCCP-SyncAck Response of DCCP-Sync to resynchronize sequence numbers.

The DCCP header contains the Source Port, the Destination Port, the Sequence

Number, etc. The DCCP generic header takes different forms depending on the value of the

Extended Sequence Numbers bit (denoted as X). If X is equal to one, the Sequence

Number field is 48 bits long, and the generic header takes 16 bytes, as shown in Figure 2:

Figure 2. DCCP Header

 10

2.2 Session Initial Protocol (SIP)

Session Initial Protocol (SIP) is an application-layer control protocol proposed by

Internet Engineering Task Force (IETF). SIP is used to establish, modify, and terminate

multimedia sessions such as Internet telephone calls. In SIP, users are identified by

Uniform Resource Identifiers (URIs), whose formats are similar to email addresses. In

each session, the URI is resolved to an IP address by the SIP proxy server. After SIP

establishes a session, some other protocols (e.g., the Real-time Transport Protocol (RTP))

will be required to transport the multimedia data. SIP also requires other protocol, such

as the Session Description Protocol (SDP), to describe the capabilities of session

participants. A SIP server is responsible for interpreting incoming SIP packets and setting

up sessions between callers and callees.

 11

Figure 3. SIP Session Flowchart

Figure 3 illustrates a typical SIP session. When Alice and Bob want to communicate,

the call will be established and terminated as follows:

1. First, Alice sends an INVITE message to the proxy server.

2. The proxy server forwards the INVITE message to Bob.

3. When Bob receives the INVITE message, it replies a 100 Trying message.

4. The proxy server forwards the 100 Trying message to Alice.

5. Bob also sends a 180 Ringing message to Alice to indicate that its IP phone begins

ringing.

 12

6. The proxy server forwards the 180 Ringing message to Alice.

7. When Bob picks up the phone and answers the call, it replies a 200 OK message.

8. The proxy server forwards the 200 OK message to Alice.

9. When Alice receives a 200 OK message, it sends an ACK message.

10. After Bob receives the ACK message, they use the RTP protocol to send their voice to

each other.

11. Assume Bob wants to terminate this call; it sends a BYE message to Alice.

12. The proxy server forwards the BYE message to Alice.

13. After Alice receives the BYE message, it sends a 200 OK message to Bob.

14. After Bob receives a 200 OK message, the call is terminated.

Figure 4. A SIP Message

As shown in Figure 4, a SIP message consists of three parts: a status line (INVITE

sip:22301@163.22.20.154 SIP/2.0), the message header (as shown in the upper red

 13

rectangle), and the message body (as shown in the lower blue rectangle). In the message

header, there are lots of fields about the route handling (where the packet comes from and

where the packet is sent to). The message body in SIP uses Session Description Protocol

(SDP) which we will discuss in the next section.

2.3 Session Description Protocol (SDP)

The Session Description Protocol (SDP) is an ASCII text based protocol for

describing multimedia sessions and their related scheduling information. The purpose of

SDP is to convey information about media streams in multimedia sessions to allow the

recipients of a session description to participate in the session. The designing philosophy of

SDP is to make it as general as possible so that it can describe conferences in most network

environments. It provides information for two parties to negotiate the media type and

encoding format for further communication. We show some important SDP fields in the

following table:

Table 3. SDP Fields

v protocol version

o originator and session identifier

s session name

t time when the session is active

c connection information

m media descriptions

a media attribute lines

Among these fields, two of them contain important information to establish

multimedia sessions. The c field contains the connection information including network

 14

type, address type and connection address. The m field contains supporting codec, media

type and media port.

2.4 Real-time Transport Protocol (RTP)

Real-time Transport Protocol (RTP) is a protocol designed to support real-time

delivery of multimedia data in IP networks. It is extensively used for transporting real-time

multimedia data in currently Internet. RTP was defined in RFC 1889[1], and further

updated in RFC 3550[2] with enhancements on transmission rules and algorithms so that it

could be capable of transporting a great deal of multimedia streams concurrently and

handling the issues introduced by Network Address Translation (NAT). Audio-on-Demand,

Video-on-Demand, Internet Telephony, and videoconferencing are some popular

multimedia applications which utilize RTP.

The size of the RTP header is 12 bytes. The RTP header contains information such as

the version of RTP, the payload type, the timestamp, etc, as shown in Figure 5. The initial

value of the sequence number is random, and it increments by 1 after a RTP packet is sent.

With the sequence number, the receiver can check whether any packet is lost. The value of

synchronization source (SSRC) identifies the source of an RTP stream.

Figure 5. RTP Header

 15

Payload type (PT) specifies the format of RTP payload. RTP supports lots of payload

types, such as PCM (A-law and µ-law), G.729, GSM. Figure 6 lists a few codecs and the

corresponding payload types. For example, the GSM codec has payload type 3, and G.729

codec has payload type 18. The audio data are carried as payload following the 12-byte

RTP header. For the destination to successfully decode the audio data using the correct

codec, the receiver must be notified of the payload type in advance, as described in the

SDP m field mentioned in the previous section.

PT C o d e c
0
2
3
8
1 8

P CM U
G.7 21
GS M
P CM A
G.7 29

Figure 6. RTP Payload Types with Corresponding Codecs

 16

3. Application Programming Interface

3.1 DCCP stack

Many operating systems provide a software object “socket” that connects an

application to a network protocol. Take UNIX for example, a program can send and

receive TCP/IP messages by opening a socket to read or write data through networks. This

simplifies program development because programmers need only worry about

manipulating the socket, and they can rely on the operating system to handle the details

about transporting messages across the network.

There is a GPL version of DCCP stack [13] included in Linux kernel 2.6.14 and later

versions. The implementation of DCCP on Linux is based on the TCP implementation. A

server application normally listens to a specific port waiting for connection requests from a

client. When a connection request arrives, the client and the server establish a dedicated

connection over the port on which they can communicate. During the connection process,

the client assigns a local port number, and binds a socket to this communication. The client

talks to the server by writing to the socket and gets information from the server by reading

from it. Similarly, the server allocates a new local port number (it needs to create a new

port number so that it can continue listening to connection requests on the original port).

The server also binds a socket to its local port and communicates with the client by reading

from and writing to the created socket.

 17

Certainly, the client and the server must agree on the same protocol; in other words,

they must agree on the language that transfers the information back and forth through the

socket.

A simple DCCP program would define some parameters and utilize some common

functions as mentioned below:

� #define SOCK_DCCP 6: The socket type to support DCCP communication.

� #define IPPROTO_DCCP 33: The Protocol field in IP header.

� #define SOL_DCCP 269: Defines the socket option level in DCCP

communication.

� socket(): Creates a new socket of a certain socket type.

� bind(): It is typically used on the server side, and associates a socket with a

socket address structure.

� listen(): It is used on the server side, and causes a bound DCCP socket to

enter the listening state.

� accept(): Creates a new connected socket, and returns a new file descriptor

referring to that socket.

� connect(): It is used on the client side, and assigns a free local port number to

a socket.

� send(): It is used for sending data to a remote socket.

� recv(): It is used for receiving data from a remote socket.

3.2 oRTP

The oRTP [15] library, written in C language, is an implementation of the Real-time

Transport Protocol (RTP). It can run on Linux, FreeBSD, and Windows operating system;

oRTP also supports partial RTP telephony events (RFC2833).

 18

To develop a simple oRTP program, we use the following functions:

� ortp_init(): Initializes the oRTP library.

� ortp_exit(): Gracefully uninitialize the oRTP library, including

shutdowning the scheduler if it was started.

� rtp_session_new(): Creates an RTP session

� rtp_session_set_payload_type(): Sets the RTP payload type

� rtp_session_set_remote_addr(): Sets the remote IP address and port

number

� rtp_session_recv_with_ts(): Tries to read the bytes of the incoming

RTP stream related to a timestamp.

� rtp_session_send_with_ts(): Sends an RTP datagram to the

destination containing the data specified by a timestamp.

3.3 mediastreamer2

The mediastreamer2 [14] library contains procedures to handle audio/video streams. It

will invoke oRTP to deliver the RTP packets. It also contains audio codecs including G.711,

Speex, and GSM, and video codecs including H263-1998, MPEG4. It also supports echo

cancellation and reading/writing WAV files during the audio conversation.

To implement a simple mediastreamer2 program, we use the following functions:

� audio_stream_new(): Creates an audio stream

� create_duplex_rtpsession(): Creates an RTP session

� audio_stream_start_full(): Starts an audio stream and sets RTP

session parameters

� ms_filter_call_method(): Sets audio device and multimedia codec, and

prepares for an RTP session

 19

� ms_filter_link(): Sets the link to the pre-set data

� ms_ticker_new(): Creates a ticker

� ms_ticker_attach(): Attaches filter to the ticker

 20

4. Implementation

In this section, we shall take Linphone as an example to explain how to utilize DCCP

in delivering audio packets.

4.1 Linphone

Linphone [8] is an open-source IP phone running on Linux. It can send and receive

audio, video, and text messages. It uses Session Initiation Protocol (SIP) [3] to establish a

conversation session. In addition, it also supports some special features, such as Dual Tone

Multi-Frequency (DTMF), Internet Protocol Version 6 (IPv6), and Simple Traversal of

UDP through NATs (STUN). Linphone is an ideal platform for developing VoIP

applications over DCCP.

As shown in Figure 7, Linphone consists of several modules. It uses eXosip to

establish SIP sessions, while the mediastreamer2 module provides procedures to handle

audio and video streams. The oRTP module sends and receives audio packets via RTP.

 21

Figure 7. System Components of Linphone

4.2 Call Flow of Linphone

In this subsection, we shall introduce the original program structure of Linphone and

the related function interfaces. Based on Figure 8, function calls of Linphone are divided

into three portions. Later in Section 4.4 we will explain how to implement DCCP by

modifying these three portions.

 22

Figure 8. Linphone Original Function Call

 23

As shown in Figure 8, when a SIP connection is created, the function

linphone_core_init_media_streams(…) in coreapi/linphonecore.c initializes a

media stream, and then calls audio_stream_new(…) in

mediastreamer2/src/audiostream.c to create an audio stream. After that,

create_duplex_rtpsession(…) creates an RTP session, and calls

rtp_session_set_local_addr(…) in oRTP/src/rtpsession_inet.c to set the local

address, then checks whether it receives a valid port number. If it does,

create_and_bind(…) is used to create a socket on the specified port; if not, the

function create_and_bind_random(…)will be invoked to randomly allocate a port

and create a socket bound to it.

After the socket is created, in the second portion,

linphone_core_start_media_streams(…) will start a media stream, and call

audio_stream_start_now(…) to start an audio stream transmission. After that, it

calls audio_stream_start_full(…) to configure the parameters of an RTP session,

and calls rtp_session_set_remote_addr(…) to configure the remote IP address.

Following that, the program will create two threads named Receiver and Sender,

respectively, in mediastreamer2/src/msrtp.c. The Receiver thread calls

receiver_preprocess(…) to configure the payload type, and uses

receiver_process(…) to start the procedure to receive RTP packets.

To read RTP packets at a constant time interval,

rtp_session_recvm_with_ts(…) is invoked to set timestamp, and then

rtp_session_rtp_recv(…) is used to receive RTP packets. On the other side, the

Sender calls sender_process(…) to start the procedure to send RTP packets, and calls

rtp_session_sendm_with_ts(…) to set timestamps. Finally

rtp_session_rtp_send(…) is called to transmit RTP packets.

 24

4.3 Porting Linphone to DCCP

In order to port Linphone from UDP to DCCP, three major modifications must be

made in the call flow of original Linphone.

1. Because DCCP transmission is uni-directional, the two nodes participating in a

connection are either a Client or a Server. Therefore, when porting Linphone to

transmit RTP streams over DCCP, we need to establish two RTP sessions.

2. Moreover, DCCP is connection-oriented, so it is quite different from the original

transport protocol of Linphone which utilizes UDP in a connectionless fashion. In

DCCP, the server must invoke accept(…) to wait for a client to call the function

connect(…) to establish a connection with the server. Notably, when the server

creates a socket, the socket must be set as the Blocking mode so that the server will

enter the Accept State and wait for clients to establish a DCCP connection. If the

server did not choose the Blocking mode, the process would directly move to the next

step without making any connection. In that case, no DCCP connection is established,

so no further packets will be accepted. This connection type of communication is

quite different from UDP.

3. When a server establishes a socket, it should specify DCCP as its transport protocol,

and replace the related parameters from UDP to DCCP as well.

4.4 Modified Call Flow of Linphone

As described in Section 4.2, there are three portions of Linphone function calls to

establish an audio conversation. In the following, we will explain what should be modified

to make RTP packets transmit over DCCP.

 25

Figure 9. Implementing DCCP Function Call (1)

The modification of the first portion is shown in Figure 9, where the shadowed

rectangles indicate the modules that must be modified to support DCCP. We rewrote the

function audio_stream_new(…) so that after an audio stream is generated , it will

create two uni-directional RTP sessions: create_duplex_rtpsession_recv(…) is

invoked to create an RTP session for receiving audio streams, and

create_duplex_rtpsession_send(…) is invoked to create another session for

sending audio streams. Being a Receiver (left part in Figure 9), it will create an RTP

session and call rtp_session_set_local_addr(…) to specify its local address,

and then call create_and_bind_recv(…) to create a socket. When creating a socket,

the transport protocol must be specified as DCCP, and related parameters must also be

specified as described in Section 3.1. Moreover, the Blocking mode should be specified for

the socket. At the Sender part (right part in Figure 9), in order to keep the original structure

 26

of oRTP and Linphone, we do not create sockets at this moment, but at the next portion.

This also provides the flexibility to allow users to choose UDP or DCCP as the transport

protocol at run time.

coreapi/l in ph on ecore.c
linphone_cor e_s t a r t _m ed ia _s t r ea m s ()

Accept & C o n n ect

m ed ias t ream er2/s rc/au d ios t ream .c
a u d io_s t r ea m _s t a r t _now ()

oR T P /s rc/rt ps es s ion _in et .c
cr ea t e_a nd _b ind _r a nd om ()

m ed ias t ream er2/s rc/m s rt p.c
s end er _pr epr oces s ()
connect ()

oR T P /s rc/rt ps es s ion _in et .c
r t p_s es s ion_r t p_r ecv _a ccept ()

oR T P /s rc/rt ps es s ion _in et .c
r t p_s es s ion_s et _r em ot e_a d d r ()

oR T P /s rc/rt ps es s ion _in et .c
r t p_s es s ion_s et _loca l_a d d r ()

m ed ias t ream er2/s rc/m s rt p.c
r eceiv er _pr epr oces s ()

oR T P /s rc/rt ps es s ion _in et .c
cr ea t e_a nd _b ind ()

m ed ias t ream er2/s rc/au d ios t ream .c
cr ea t e_d u plex _r t ps es s ion2()

m ed ias t ream er2/s rc/au d ios t ream .c
a u d io_s t r ea m _s t a r t _f u ll_r ecv ()

m ed ias t ream er2/s rc/au d ios t ream .c
a u d io_s t r ea m _s t a r t _f u ll_s end ()

oR T P /s rc/rt ps es s ion _in et .c
cr ea t e_a nd _b ind _s end ()

Figure 10. Implementing DCCP Function Call (2)

The modification of the second portion is shown in Figure 10. To deliver media

streams over DCCP, we need to modify the function audio_stream_start_now(…)

to transmit audio streams between the Receiver and the Sender. As shown in the left part of

Figure 10, the Receiver invokes audio_stream_start_full_recv(…) to specify

 27

the parameters for the RTP session of the Receiver, and creates a thread for the Receiver to

receive RTP packets. Then it calls receiver_preprocess(…) to set the Receiver

payload type, and uses the function rtp_session_rtp_recv_accept(…) to enter

the accept state to wait for the Sender creating a connection. On the other side, as shown in

the right part, the function audio_stream_start_full_send(…) is invoked by the

Sender to specify the parameters of the RTP session, and creates a thread for the Sender to

transmit RTP packets. In the function rtp_session_set_remote_addr(…), it sets

the remote IP address of the end host, and checks whether a socket was created. If not, it

calls the function rtp_session_set_local_addr(…) to specify its local address,

and randomly selects a valid UDP port by the function

create_and_bind_random(…), and then uses create_and_bind_send(…) to

create the Sender socket. After that, it calls sender_preprocess(…) to connect with

the Receiver.

Figure 11. Implementing DCCP Function Call (3)

As shown in Figure 11, in the Accept & Connect state, the Receiver calls

receiver_process(…) and becomes ready to receive RTP packets. This function

call will further invoke the function rtp_session_recvm_with_ts(…) to set

timestamps, and then call rtp_session_rtp_recv(…) to receive RTP packets. We

 28

modified these three functions by adding a parameter named connfd that returned from

function accept(…). Meanwhile, as the right part of Figure 11 shows, the processes of

the Sender session just follows the procedure in the original Linphone program so that

these corresponding functions need not be changed.

4.5 Wireshark Enhancement

We implemented the DCCP protocol stack on Linphone, and ran the program on two

hosts running Linux Fedora 7. The SIP and DCCP packets during the communication were

captured by Wireshark. Because current Wireshark cannot analyze RTP packets in DCCP,

the captured packets will only be shown as “DCCP data” as in Figure 12. To make it

capable of parsing the RTP packets transported by DCCP, some modifications must be

made, as we shall explain in Section 4.5.2.

Figure 12. DCCP Packets Captured by Wireshark

 29

4.5.1 Wireshark

Wireshark (known as Ethereal until a trademark dispute in 2006 summer) is a fantastic

open-source network protocol analyzer for Unix and Windows. It allows network engineers

to examine data from a live network or from a capture file on disk. You can interactively

browse the captured data and view summary and detail information for each packet.

Wireshark has several powerful features, including a rich display filter language and the

ability to view the reconstructed stream of a TCP session. It also supports hundreds of

protocols and media types. Wireshark is software that understands the structure of different

network protocols. Thus it is capable of parsing single fields in protocol encapsulation and

interpreting their meaning. Wireshark uses a library Pcap to capture packets, so it can

perform packet capturing on every network adapter supported by Pcap.

4.5.2 SDP Modification for DCCP

To make Wireshark capable of automatically distinguishing the received RTP packets

transmitted over UDP or DCCP, we refer to the Internet Draft “RTP and the Datagram

Congestion Control Protocol (DCCP)”[19]. It re-defined the Media Description field in

SDP, to specify the transport protocol. In the Media Description field in current SDP,

RTP/AVP specified that UDP is used as the transport protocol, as shown in Figure 13.

 30

Figure 13. SDP Field for UDP

To use DCCP in delivering RTP packets, it should specify DCCP/RTP/AVP at the

Media Description field in SDP. So, in Linphone we need to modify the function

sdp_context_add_payload (…) in coreapi/sdphandler.c by replacing the value

from RTP/AVP to DCCP/RTP/AVP. A sample code in C language is shown below.

Void sdp_context_add_payload (sdp_context_t *ctx,

 sdp_payload_t *payload, char *media)

{

…

payload->proto = "DCCP/RTP/AVP";

…

}

Figure 14 shows the Media Description field in SDP captured by Wireshark.

 31

Figure 14. SDP Field for DCCP

In the following section, we will describe how to modify Wireshark to let it capable of

analyzing RTP packets when they are transported over DCCP.

4.5.3 Wireshark Modification

To let Wireshark analyze RTP packets in DCCP datagrams, we need to modify the

function srtp_add_address(…) in epan/dissectors/packet-rtps.c by replacing the

parameter from PT_UDP to PT_DCCP. See the following two modified functions:

find_conversation(setup_frame_number, addr, &null_addr, PT_DCCP, port,

other_port, NO_ADDR_B | (!other_port ? NO_PORT_B : 0));

conversation_new(setup_frame_number, addr, &null_addr, PT_DCCP,(guint32)port,

(guint32)other_port, NO_ADDR2 | (!other_port ? NO_PORT2 : 0));

 32

Figure 15 shows some DCCP packets analyzed by the modified Wireshark.

Figure 15. DCCP Packets Captured by the Modified Wireshark

 33

5. Performance Evaluation

In this section, we describe the testing environment and tools we used in testing the

performance of DCCP when it is used to transport VoIP packets.

5.1 The Testing Tool

� Iperf

Iperf is a tool to measure the throughput and the available bandwidth of a network,

which allows user to specify the various parameters for testing a network. Iperf will report

bandwidth, delay variation, and datagram loss. Iperf was originally developed by

NLANR/DAST, and now it is maintained and developed as a SourceForge project.

5.2 The Testing Environment

Our testing environment consists of the following items:

� Hardware:

1. CPU: Intel Pentium 4 CPU 3.4GHz

2. Memory: 1GB

� Software:

1. Operating System: Linux Fedora 7

2. perl-XML-Parser: 2.34-6.1.2.2.1

3. oRTP: 0.13.0

4. speex-devel: 1.2-0.2.beta1

 34

5. readline-devel: 5.2-4.fc7

6. libosip2 :2.2.2

7. mediastreamer2: 2.0.2

5.3 The Measured Results

We used Iperf to generate the TCP flow and similarly used oRTP to generate the flows

of DCCP CCID2 and UDP. The network topology is shown in Figure 16, where the

10Mbit/s hub is the bottleneck between two end hosts. We tested the throughput of both the

TCP flow and the DCCP CCID2 flow.

Figure 16. DCCP+TCP Network Topology

In each iteration, we simultaneously generated one TCP flow and one DCCP CCID2

flow with a duration of 30 seconds. The experiment is repeated 100 times. As shown in

Table 4, the average transmission rate of TCP and DCCP is 7.74 Mbit/s and 2.02 Mbit/s,

respectively.

Table 4. Average Transmission Rate of DCCP+TCP

TCP 7.74 Mbit/s

DCCP 2.02 Mbit/s

 35

Next, with similar network topology shown in Figure 17, we tested the throughput of

both the TCP flow and the UDP flow.

Figure 17. UDP+TCP Network Topology

Similarly, we simultaneously generated one TCP flow and one UDP flow with a period

of 30 seconds. As shown in Table 5, the average transmission rate of TCP and UDP is 0.1

Mbit/s and 9.66 Mbit/s, respectively.

Table 5. Average Transmission Rate of UDP+TCP

TCP 0.10Mbit/s

UDP 9.66Mbit/s

As shown in Table 5, the TCP flow has low throughput compared with the UDP flow.

This is due to the lack of congestion control mechanism in UDP. From this observation, it

can be seen clearly that as the volume of UDP traffic increases, it would be harmful to TCP

traffic. On the contrary, DCCP is very friendly to TCP.

Like the experiment result above, DCCP is more friendly than UDP. However in a

network with low bandwidth, the VoIP communication may fail because of the low

bandwidth. A possible solution is to re-negotiate the codec with the session partner by

sending a re-INVITE SIP request with an updated “b=“ line to indicate the new required

bandwidth [19].

 36

6. Conclusions and Future work

In this thesis, we presented the system architecture that allows the real-time RTP

audio streams to transmit over DCCP. Because the DCCP connections are uni-directional,

we must create two RTP sessions for transmitting RTP packets. To verify the architecture

that we proposed, we selected a well-known VoIP application Linphone on Linux, and

further modified its transport protocol from UDP to DCCP. After our revision, users can

use Linphone to call others, and the audio streams are successfully transported over DCCP

during the conversation. We also modified Wireshark so that it can parse the RTP packets

transported by DCCP. Performance testing shows that DCCP is friendly to TCP, while

UDP will easily degrade the performance of TCP applications.

Currently, the modified Linphone that we rewrote can only support DCCP as the

transport protocol. In the future, we plan to include both the support of UDP and DCCP on

a single Linphone. We are also considering the transition mechanism of DCCP, such as

the translator of UDP and DCCP. In addition, presently most Network Address Translation

(NAT) implementations can only handle packets which are transported over TCP or UDP.

How to efficiently handle DCCP packets through NAT is an interesting problem which

deserves further study.

As congestion control mechanisms of DCCP, in addition to aforementioned CCID2

and CCID3, lots of researchers are investigating a new mechanism named CCID4 to

handle small packets [draft-ietf-dccp-ccid4-02.txt]. In VoIP applications, generally small

packets (160 bytes in G.711, and 20 bytes G.729) are transmitted. Therefore, if this

 37

congestion control algorithm can be applied on Internet telephony, it is expected that the

performance can be further improved. Besides, the study on the impact of congestion on

Mean Opinion Score (MOS) for VoIP applications running over UDP or DCCP is also an

interesting topic in the future.

 38

References

[1] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for

Real-Time Applications,” IETF RFC 1889, January 1996.

[2] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for

Real-Time Applications,” IETF RFC 3550, July 2003.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley, E. Schooler, “SIP: Session Initiation Protocol, ” IETF RFC 3261, June 2002.

[4] E. Kohler, M. Handley, S. Floyd, “Datagram Congestion Control Protocol (DCCP),”

IETF RFC 4340, March 2006.

[5] S. Floyd, E. Kohler, “Datagram Congestion Control Protocol (DCCP) Congestion

Control ID 2: TCP-Like Congestion Control,” IETF RFC 4341, March 2006.

[6] S. Floyd, E. Kohler, J. Padhye, “Datagram Congestion Control Protocol (DCCP)

Congestion Control ID 3: TCP-Friendly Rate Control (TFRC),” IETF RFC 4342,

March 2006.

[7] C. Perkins, L. Gharai, “RTP and the Datagram Congestion Control Protocol,” IEEE

International Conference on Multimedia and Expo (ICME) 2006, July 2006.

[8] Linphone [http://www.linphone.org/].

[9] J. Lai, E. Kohler, “Efficiency and late data choice in a user-kernel interface for

congestion-controlled datagrams,” 12th Annual SPIE Conference on Multimedia

Computing and Networking (MMCN '05), January 2005.

[10] X.F. Guo, T.M. Feng, J.Y. Zhou, G.H. Chen, “DCCP Research and Analysis of its

Performance,” [http://scholar.ilib.cn/Abstract.aspx?A=jsjkx200310033], Computer

Science, Vol. 30, No. 10, October 2003.

[11] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M.

 39

Kalla, L. Zhang, V. Paxson, “Stream Control Transmission Protocol,” IETF RFC

2960, October 2000.

[12] C. Albuquerque, B.J. Vickers, T. Suda, “Network border patrol: preventing

congestion collapse and promoting fairness in the Internet,” IEEE/ACM Transactions

on Networking, Vol. 12, No. 1, February 2004.

[13] DCCP Socket [http://www.linuxfoundation.org/en/Net:DCCP].

[14] mediastreamer2

[http://webscripts.softpedia.com/script/Multimedia/mediastreamer2-24442.html].

[15] oRTP [http://freshmeat.net/projects/ortp/].

[16] Wireshark [http://www.wireshark.org/].

[17] M. Handley, V. Jacobson, “SDP: Session Description Protocol,” IETF RFC 2327,

April 1998.

[18] J. Rosenberg, H. Schulzrinne, “An Offer/Answer Model with Session Description

Protocol (SDP),” IETF RFC 3264, June 2002.

[19] C. Perkins, “RTP and the Datagram Congestion Control Protocol (DCCP),” IETF

Internet-Draft [draft-ietf-dccp-rtp-07.txt], Work in Progress, June 2007.

 40

Appendix

Appendix A . Codes of oRTP

� LinphoneD\oRTP\src\rtpsession_inet.c

…

static ortp_socket_t create_and_bind(const char *addr, int port, int

*sock_family){

 int err;

 ortp_socket_t sock=-1;

#ifdef ORTP_INET6

 char num[8];

 struct addrinfo hints, *res0, *res;

#else

 struct sockaddr_in saddr;

#endif

/*Define DCCP parameters*/

 int pkt_size=256;

 int SOCK_DCCP=6;

 int SOL_DCCP=269;

 int DCCP_SOCKOPT_PACKET_SIZE=1;

 int DCCP_SOCKOPT_SERVICE=2;

 int IPPROTO_DCCP=33;

#ifdef ORTP_INET6

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = PF_UNSPEC;

 snprintf(num, sizeof(num), "%d",port);

 err = getaddrinfo(addr,num, &hints, &res0);

 if (err!=0) {

 ortp_warning ("Error in getaddrinfo on (addr=%s port=%i): %s",

addr, port, gai_strerror(err));

 return -1;

 41

 }

 for (res = res0; res; res = res->ai_next) {

 //Use the predefined DCCP parameters to create a socket

 sock = socket(res->ai_family, SOCK_DCCP, IPPROTO_DCCP);

 if (sock < 0)

 continue;

 // Set DCCP as the parameters of the socket options
 err = setsockopt(sock,SOL_DCCP,DCCP_SOCKOPT_PACKET_SIZE,

 (char*)&pkt_size,sizeof(pkt_size));

 if (err < 0)

 {

 ortp_warning ("Fail to set DCCP address reusable: %s.",

 getSocketError());

 }

 err = setsockopt(sock,SOL_DCCP,DCCP_SOCKOPT_SERVICE,

 (char*)&pkt_size,sizeof(pkt_size));

 if (err < 0)

 {

 ortp_warning ("Fail to set DCCP2 address reusable: %s.",

getSocketError());

 }

 *sock_family=res->ai_family;
 err = bind (sock, res->ai_addr, res->ai_addrlen);

 if (err != 0)

 {

 ortp_warning ("Fail to bind rtp socket to (addr=%s port=%i) :

%s.", addr,port, getSocketError());

 close_socket (sock);

 sock=-1;

 continue;

 }

 // Listen for socket connections

 err=listen(sock,10);

#ifndef __hpux

 switch (res->ai_family)

 {

 case AF_INET:

 42

 if (IN_MULTICAST(ntohl(((struct sockaddr_in *)

res->ai_addr)->sin_addr.s_addr)))

 {

 printf("bind1-__hpux_AF_INET_in_multicast\n");

 struct ip_mreq mreq;

 mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)

res->ai_addr)->

sin_addr.s_addr;

 mreq.imr_interface.s_addr = INADDR_ANY;

 err = setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP,

 (SOCKET_OPTION_VALUE) &mreq,

sizeof(mreq));

 if (err < 0)

 {

 ortp_warning ("Fail to join address group: %s.",

getSocketError());

 close_socket (sock);

 sock=-1;

 continue;

 }

 }

 break;

 case AF_INET6:

 printf("bind1-__hpux_AF_INET6\n");

 if (IN6_IS_ADDR_MULTICAST(&(((struct sockaddr_in6 *)

res->ai_addr)->sin6_addr)))

 {

 struct ipv6_mreq mreq;

 mreq.ipv6mr_multiaddr = ((struct sockaddr_in6 *)

res->ai_addr)->sin6_addr;

 mreq.ipv6mr_interface = 0;

 err = setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP,

(SOCKET_OPTION_VALUE)&mreq,

sizeof(mreq));

 if (err < 0)

 {

 ortp_warning ("Fail to join address group: %s.",

 43

getSocketError());

 close_socket (sock);

 sock=-1;

 continue;

 }

 }

 break;

 }

#endif

 break;

 }

 freeaddrinfo(res0);

#else

 printf("bind1--create_ipv4_socket\n");

 saddr.sin_family = AF_INET;

 *sock_family=AF_INET;

 err = inet_aton (addr, &saddr.sin_addr);

 if (err < 0)

 {

 ortp_warning ("Error in socket address:%s.", getSocketError());

 return err;

 }

 saddr.sin_port = htons (port);

 sock = socket (PF_INET, SOCK_DCCP, IPPROTO_DCCP);

 if (sock<0) return -1;

 err = setsockopt (sock, SOL_SOCKET, SO_REUSEADDR,

 (SOCKET_OPTION_VALUE)&optval, sizeof (optval));

 if (err < 0)

 {

 ortp_warning ("Fail to set rtp address reusable:

%s.",getSocketError());

 }

 err = bind (sock,

 (struct sockaddr *) &saddr,

 sizeof (saddr));

 if (err != 0)

 {

 44

 ortp_warning ("Fail to bind rtp socket to port %i: %s.", port,

getSocketError());

 close_socket (sock);

 return -1;

 }

#endif

 if (sock>=0)

 {

#ifdef WIN32

 /* increase RTP buffer on windows */

 int bufsize = 32768;

 err = setsockopt(sock, SOL_SOCKET, SO_SNDBUF, (void *)&bufsize,

sizeof(bufsize));

 if (err == -1) {

 ortp_warning ("Fail to increase buffer size for socket

(port %i): %s.", port, getSocketError());

 }

 bufsize = 32768;

 err = setsockopt(sock, SOL_SOCKET, SO_RCVBUF, (void *)&bufsize,

 sizeof(bufsize));

 if (err == -1) {

 ortp_warning ("Fail to increase buffer size for socket

(port %i): %s.", port, getSocketError());

 }

#endif /* comment the following line to set the socket under the

blocking mode

 set_non_blocking_socket (sock);

 */

 }

 return sock;

}

…

//Wait for a new connection

int rtp_session_rtp_recv_accept (RtpSession * session)

{

 45

 int connfd;

 ortp_socket_t sockfd=session->rtp.socket;

 struct sockaddr_in remaddr;

 socklen_t addrlen = sizeof (remaddr);

 if((connfd=accept(sockfd,(struct sockaddr *)

&remaddr,&addrlen))<0){

 ortp_warning("accept_error");

 }

 else {

printf("accept_ok\n");

}

 return connfd;

}

…

//Receive RTP packets and add a parameter named connfd that returned from

function accept(…)to function rtp_session_rtp_recv(…)

int rtp_session_rtp_recv (RtpSession * session, uint32_t user_ts,int

connfd)

{

 int error ;

 ortp_socket_t sockfd=session->rtp.socket;

#ifdef ORTP_INET6

 struct sockaddr_in remaddr;

#else

 struct sockaddr remaddr;

#endif

 socklen_t addrlen = sizeof (remaddr);

 mblk_t *mp;

 if ((sockfd<0) && !rtp_session_using_transport(session, rtp))

 return -1; /*session has no sockets for the moment*/

 while (1)

 {

 int bufsz;

 bool_t sock_connected=!!(session->flags &

RTP_SOCKET_CONNECTED);

 46

 if (session->rtp.cached_mp==NULL){

 session->rtp.cached_mp = allocb (session->recv_buf_size,

0);

 }

 mp=session->rtp.cached_mp;

 bufsz=(int) (mp->b_datap->db_lim - mp->b_datap->db_base);

 /* if (sock_connected){

 error=recv(connfd,mp->b_wptr,bufsz,0);

 }else if (rtp_session_using_transport(session, rtp)){

 error = (session->rtp.tr->t_recvfrom)(session->rtp.tr,

 mp->b_wptr, bufsz, 0,

(struct sockaddr *) &remaddr,&addrlen);

 }

 else{

 error = recvfrom(connfd, mp->b_wptr,bufsz, 0,

(struct sockaddr *) &remaddr,&addrlen);

 }

 */

 //Receive RTP packets

 error = recv(connfd, mp->b_wptr,bufsz, 0);

 if(error>0) {

 session->totalpacketrecv++;

 //printf("recvpct=%d ",session->totalpacketrecv);

 }

 if (error > 0){

 if (session->symmetric_rtp && !sock_connected){

 // store the sender rtp address to do symmetric RTP

 memcpy(&session->rtp.rem_addr,&remaddr,addrlen);

 session->rtp.rem_addrlen=addrlen;

 /*

 if (session->use_connect){

 if (try_connect(connfd,(struct sockaddr*)&remaddr,

addrlen))

{

 */

 session->flags|=RTP_SOCKET_CONNECTED;

 /*

 47

 }

 }

 */

 }

 /* then parse the message and put on queue */

 mp->b_wptr+=error;

 rtp_session_rtp_parse (session, mp,

user_ts + session->rtp.hwrcv_diff_ts,

(struct sockaddr*)&remaddr,

addrlen);

 session->rtp.cached_mp=NULL;

 /*for bandwidth measurements:*/

 update_recv_bytes(session,error);

 return 0;

 }

 else

 {

 int errnum=getSocketErrorCode();

 if (error == 0)

 {

 ortp_warning("rtp_recv: strange... recv() returned

zero.");

 }

 else if (!is_would_block_error(errnum))

 {

 if (session->on_network_error.count>0){

 rtp_signal_table_emit3(&session->on_network_error,

(long)"Error receiving RTP

packet",INT_TO_POINTER(get

SocketErrorCode()));

 printf("network_error\n");

 }else{

 ortp_warning("Error receiving RTP packet:

%s.",getSocketError());

 }

 }

 /* don't free the cached_mp, it will be reused next time */

 48

 return -1; /* avoids an infinite loop ! */

 }

 }

 return error;

}

 49

Appendix B . Codes of mediastreamer2

� LinphoneD\ mediastreamer2\src\ audiostream.c

…

RtpSession * create_duplex_rtpsession_recv(int locport, bool_t ipv6){

 RtpSession *rtpr;

 ortp_init();

 ortp_scheduler_init();

 rtpr=rtp_session_new(RTP_SESSION_SENDRECV);

 //Set the socket under the blocking mode

 rtp_session_set_scheduling_mode(rtpr,1);

 rtp_session_set_blocking_mode(rtpr,1);

 rtp_session_set_recv_buf_size(rtpr,MAX_RTP_SIZE);

 rtp_session_enable_adaptive_jitter_compensation(rtpr,TRUE);

 rtp_session_set_symmetric_rtp(rtpr,TRUE);

 rtp_session_set_local_addr(rtpr,ipv6 ? "::" : "0.0.0.0",locport);

 return rtpr;

}

RtpSession * create_duplex_rtpsession_send(int locport, bool_t ipv6){

 RtpSession *rtpr;

 ortp_init();

 ortp_scheduler_init();

 rtpr=rtp_session_new(RTP_SESSION_SENDRECV);

 rtp_session_set_recv_buf_size(rtpr,MAX_RTP_SIZE);

 //Set the sender under the connected mode

 rtp_session_set_connected_mode(rtpr,TRUE);

 rtp_session_enable_adaptive_jitter_compensation(rtpr,TRUE);

 rtp_session_set_symmetric_rtp(rtpr,TRUE);

 return rtpr;

}

…

 50

int audio_stream_start_full_recv(AudioStream *stream, RtpProfile

*profile, const char *remip,int remport, int payload,int jitt_comp, const

char *infile, const char *outfile, MSSndCard *playcard, MSSndCard

*captcard, bool_t use_ec)

{

 RtpSession *rtps_recv=stream->session;

 PayloadType *pt;

 int tmp;

 rtp_session_set_payload_type(rtps_recv,payload);

 rtp_session_set_jitter_compensation(rtps_recv,jitt_comp);

 stream->rtprecv=ms_filter_new(MS_RTP_RECV_ID);

 ms_filter_call_method(stream->rtprecv,MS_RTP_RECV_SET_SESSION,

rtps_recv);

 stream->session=rtps_recv;

 if (playcard!=NULL)

stream->soundwrite=ms_snd_card_create_writer(playcard);

 else {

 stream->soundwrite=ms_filter_new(MS_FILE_REC_ID);

 if (outfile!=NULL) audio_stream_record(stream,outfile);

 }

 /* creates the couple of encoder/decoder */

 pt=rtp_profile_get_payload(profile,payload);

 if (pt==NULL){

 ms_error("audiostream.c: undefined payload type.");

 return -1;

 }

 stream->decoder=ms_filter_create_decoder(pt->mime_type);

 if ((stream->encoder==NULL) || (stream->decoder==NULL)){

 /* big problem: we have not a registered codec for this payload...*/

 ms_error("mediastream.c: No decoder available for payload

%i.",payload);

 return -1;

 }

 if (use_ec) {

 stream->ec=ms_filter_new(MS_SPEEX_EC_ID);

 51

 ms_filter_call_method(stream->ec,MS_FILTER_SET_SAMPLE_RATE,

&pt->clock_rate);

 printf("use_ec---\n");

 }

 /* give the sound filters some properties */

 ms_filter_call_method(stream->soundwrite,

MS_FILTER_SET_SAMPLE_RATE,&pt->clock_rate);

 tmp=1;

 ms_filter_call_method(stream->soundwrite,MS_FILTER_SET_NCHANNELS,

 &tmp);

 ms_filter_call_method(stream->decoder,MS_FILTER_SET_SAMPLE_RATE,

&pt->clock_rate);

 ms_filter_call_method(stream->decoder,MS_FILTER_SET_BITRATE,

&pt->normal_bitrate);

 if (pt->recv_fmtp!=NULL)

ms_filter_call_method(stream->decoder,MS_FILTER_SET_FMTP,

(void*)pt->recv_fmtp);

 /* and then connect all */

 /* tip: draw yourself the picture if you don't understand */

 if (stream->ec){

 ms_filter_link(stream->ec,0,stream->soundwrite,0);

 }else{

 ms_filter_link(stream->dtmfgen,0,stream->soundwrite,0);

 }

 ms_filter_link(stream->rtprecv,0,stream->decoder,0);

 ms_filter_link(stream->decoder,0,stream->dtmfgen,0);

 /* create ticker */

 stream->ticker=ms_ticker_new();

 ms_ticker_attach(stream->ticker,stream->rtprecv);

 return 0;

}

int audio_stream_start_full_send(AudioStream *stream, RtpProfile

*profile, const char *remip,int remport, int payload,int jitt_comp, const

char *infile, const char *outfile, MSSndCard *playcard, MSSndCard

*captcard, bool_t use_ec)

{

 52

 //Declare the RTP session of sender

 RtpSession *rtps=stream->session2;

 PayloadType *pt;

 rtp_session_set_profile(rtps,profile);

 if (remport>0) {

 rtp_session_set_remote_addr(rtps,remip,remport);

 }

 rtp_session_set_payload_type(rtps,payload);

 rtp_session_set_jitter_compensation(rtps,jitt_comp);

 stream->rtpsend=ms_filter_new(MS_RTP_SEND_ID);

 if (remport>0)

 ms_filter_call_method(stream->rtpsend,MS_RTP_SEND_SET_SESSION,

rtps);

 //Assign values to RTP session of the sender

 stream->session2=rtps;

 stream->dtmfgen=ms_filter_new(MS_DTMF_GEN_ID);

 rtp_session_signal_connect(rtps,"telephone-event",

(RtpCallback)on_dtmf_received,

(unsigned long)stream->dtmfgen);

 rtp_session_signal_connect(rtps,"payload_type_changed",

(RtpCallback)payload_type_changed,

(unsigned long)stream);

 // creates the local part /

 if (captcard!=NULL)

stream->soundread=ms_snd_card_create_reader(captcard);

 else {

 stream->soundread=ms_filter_new(MS_FILE_PLAYER_ID);

 if (infile!=NULL) audio_stream_play(stream,infile);

 }

 // creates the couple of encoder/decoder /

 pt=rtp_profile_get_payload(profile,payload);

 if (pt==NULL){

 ms_error("audiostream.c: undefined payload type.");

 return -1;

 }

 stream->encoder=ms_filter_create_encoder(pt->mime_type);

 if (use_ec) {

 53

 stream->ec=ms_filter_new(MS_SPEEX_EC_ID);

 ms_filter_call_method(stream->ec,MS_FILTER_SET_SAMPLE_RATE,

&pt->clock_rate);

 }

 // give the sound filters some properties

 ms_filter_call_method(stream->soundread,MS_FILTER_SET_SAMPLE_RATE

,&pt->clock_rate);

 // give the encoder/decoder some parameters

ms_filter_call_method(stream->encoder,MS_FILTER_SET_SAMPLE_RATE,

&pt->clock_rate);

 if (pt->normal_bitrate>0){

ms_message("Setting audio encoder network bitrate to %i",

pt->normal_bitrate);

ms_filter_call_method(stream->encoder,MS_FILTER_SET_BITRATE,

&pt->normal_bitrate);

 }

if (pt->send_fmtp!=NULL)

ms_filter_call_method(stream->encoder,MS_FILTER_SET_FMTP,

 (void*)pt->send_fmtp);

 // and then connect all

 // tip: draw yourself the picture if you don't understand

 if (stream->ec){

 ms_filter_link(stream->soundread,0,stream->ec,1);

 ms_filter_link(stream->ec,1,stream->encoder,0);

 ms_filter_link(stream->dtmfgen,0,stream->ec,0);

 }else{

 ms_filter_link(stream->soundread,0,stream->encoder,0);

 }

 ms_filter_link(stream->encoder,0,stream->rtpsend,0);

 printf("encoder,0-rtpsend,0\n");

 // create ticker

 stream->ticker=ms_ticker_new();

 ms_ticker_attach(stream->ticker,stream->soundread);

 return 0;

}

� LinphoneD\ mediastreamer2\src\ msrtp.c

 54

//Include ortp/ortp.h and ortp/rtpsession.h

#include "ortp/ortp.h"

#include "ortp/rtpsession.h"

…

static void sender_preprocess(MSFilter * f){

 SenderData *d = (SenderData *) f->data;

 //Connect with the Receiver

if(connect(d->session->rtp.socket,

(struct sockaddr*)&d->session->rtp.rem_addr,

d->session->rtp.rem_addrlen)<0)

 {

ortp_warning("Could not connect() socket: %s",getSocketError());

 }else{

 printf("sender-connect()--ok!!!\n");

 }

}

…

static void receiver_preprocess(MSFilter * f){

 ReceiverData *d = (ReceiverData *) f->data;

 if (d->session){

 PayloadType *pt=rtp_profile_get_payload(

 rtp_session_get_profile(d->session),

 rtp_session_get_recv_payload_type(d->session));

 if (pt){

 if (pt->type!=PAYLOAD_VIDEO){

 rtp_session_flush_sockets(d->session);

 }

 }

 }

 //Call rtp_session_rtp_recv_accept() to wait for the sender creating

a connection

 d->connfd=rtp_session_rtp_recv_accept(d->session);

}

 55

…

static void receiver_process(MSFilter * f)

{

 ReceiverData *d = (ReceiverData *) f->data;

 mblk_t *m;

 uint32_t timestamp;

 if (d->session == NULL)

 return;

 timestamp = (f->ticker->time * d->rate) / ((uint64_t)1000);

 // using “if” statement to replace a “while” loop
if((m = rtp_session_recvm_with_ts(d->session,

timestamp,d->connfd)) != NULL) {

 mblk_t *payload = m->b_cont;

 mblk_set_timestamp_info(payload, rtp_get_timestamp(m));

 mblk_set_marker_info(payload, rtp_get_markbit(m));

 mblk_set_payload_type(payload, rtp_get_payload_type(m));

 freeb(m);

 ms_queue_put(f->outputs[0], payload);

 }

 /* check received STUN request */

 if (d->ortp_event!=NULL)

 {

 OrtpEvent *evt = ortp_ev_queue_get(d->ortp_event);

 while (evt != NULL) {

 if (ortp_event_get_type(evt) ==

 ORTP_EVENT_STUN_PACKET_RECEIVED) {

 ice_process_stun_message(d->session, d->cpair, evt);

 }

 if (ortp_event_get_type(evt) ==

 ORTP_EVENT_TELEPHONE_EVENT) {

 }

 ortp_event_destroy(evt);

 evt = ortp_ev_queue_get(d->ortp_event);

 }

 }

 56

}

 57

Appendix B . Codes of Wireshark

� wireshark-1.0.2\epan\dissectors\packet-sdp.c

…

static void dissect_sdp(tvbuff_t *tvb, packet_info *pinfo, proto_tree

*tree) {

…

if(global_sdp_establish_conversation){

/* Check if media protocol is RTP */

is_rtp = ((strcmp(transport_info.media_proto[n],"RTP/AVP")==0)

|| (strcmp(transport_info.media_proto[n],"DCCP/RTP/AVP")==0));

 /* Check if media protocol is SRTP */

is_srtp =

(strcmp(transport_info.media_proto[n],"RTP/SAVP")==0);

 /* Check if media protocol is T38 */

is_t38 = ((strcmp(transport_info.media_proto[n],"UDPTL")==0) ||

(strcmp(transport_info.media_proto[n],"udptl")==0));

/* Check if media protocol is MSRP/TCP */

is_msrp =

(strcmp(transport_info.media_proto[n],"msrp/tcp")==0);

}

…

if (is_srtp) {

struct srtp_info *dummy_srtp_info = se_alloc0(sizeof(struct

srtp_info));

srtp_add_address(pinfo, &src_addr, port, 0, "SDP",

pinfo->fd->num,

transport_info.media[n].rtp_dyn_payload, dummy_srtp_info);

 58

} else {

// Distinguish the received RTP packets which are transmitted over
UDP or DCCP from SDP

if(strcmp(transport_info.media_proto[n],"RTP/AVP")==0){

pinfo->ptype=3;//UDP

}else

if(strcmp(transport_info.media_proto[n],"DCCP/RTP/AVP")==0){

pinfo->ptype=4;//DCCP

}

rtp_add_address(pinfo, &src_addr, port, 0, "SDP",

pinfo->fd->num,

transport_info.media[n].rtp_dyn_payload);

}

� wireshark-1.0.2\epan\dissectors\packet-rtp.c

…

void srtp_add_address(packet_info *pinfo, address *addr, int port, int

other_port, const gchar *setup_method, guint32

setup_frame_number, GHashTable *rtp_dyn_payload,

struct srtp_info *srtp_info)

{

…

// Analyze the received RTP packets transmitted over UDP or DCCP
if(pinfo->ptype==3){

p_conv = find_conversation(setup_frame_number, addr, &null_addr,

PT_UDP, port, other_port, NO_ADDR_B |

(!other_port ? NO_PORT_B : 0));

}else if(pinfo->ptype==4){

p_conv = find_conversation(setup_frame_number, addr, &null_addr,

PT_DCCP, port, other_port, NO_ADDR_B |

(!other_port ? NO_PORT_B : 0));

 59

}

/*If not, create a new conversation.*/

if (!p_conv || p_conv->setup_frame != setup_frame_number) {

if(pinfo->ptype==3){

p_conv = conversation_new(setup_frame_number, addr,

&null_addr, PT_UDP, (guint32)port,

(guint32)other_port, NO_ADDR2 |

(!other_port ? NO_PORT2 : 0));

}else if(pinfo->ptype==4){

p_conv = conversation_new(setup_frame_number, addr,

&null_addr, PT_DCCP, (guint32)port,

(guint32)other_port, NO_ADDR2 |

(!other_port ? NO_PORT2 : 0));

}

 …

}

