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Abstract— High-profile and often destructive distributed denial
of service (DDoS) attacks continue to be one of the top security
concerns as the DDoS attacks volumes are increasing constantly.
Among them, the SYN Flood attack is the most common type.
Conventional DDoS defense solutions may not be preferable,
since they demand highly capable hardware resources, which
induce high cost and long deployment cycle. The emerging of
network function virtualization (NFV) technology introduces new
opportunities to decrease the amount of proprietary hardware
that is needed to launch and operate network services. In this
paper, we propose a DDoS defense mechanism named CoFence,
which facilitates a “domain-helps-domain” collaboration network
among NFV-based domain networks. CoFence allows domain
networks to help each other in handling large volume of
DDoS attacks through resource sharing. Specifically, we design
a dynamic resource allocation mechanism for domains so that
the resource allocation is fair, efficient, and incentive-compatible.
The resource sharing mechanism is modeled as a multi-leader-
follower Stackelberg game. In this game, all domains have a
degree of control to maximize their own utility. The resource
supplier domains determine the amount of resource to each
requesting peer based on optimizing a reciprocal-based utility
function. On the other hand, the resource requesting domains
decide the level of demand to send to the resource supplier
domains in order to reach sufficient support. Our simulation
results demonstrate that the designed resource allocation game
is effective, incentive compatible, fair, and reciprocal under its
Nash equilibrium.

Index Terms— Software defined networking, network function
virtualization, DDoS, collaborative network.

I. INTRODUCTION

IN RECENT years, Denial of Service (DDoS) attacks
have evolved to be increasingly powerful and destruc-

tive, which can cause severe damage to internet service
providers (ISPs) and online services for resource-limited small
and medium-sized organizations. The growth of “DDoS as a
service” [6], [26] has further made attacks much easier to
be launched since all that attackers need to do is to visit
the website, customize, schedule, and pay for an attack.
Some recent incidents show that DDoS attacks are becoming
stronger and more frequent. For example, the Spamhaus attack
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in 2013 [3] has generated 300 Gbps attack traffic. This number
has been increased to 600 Gbps in January 2016 [20].

There are two major types of attack traffic: IP spoofing
attacks and real source IP-based attacks. The real source
IP-based DDoS attacks commonly utilize compromised nodes
in the Internet, called bots or zombies, to launch an attack.
On the other hand, IP spoofing DDoS is an attack in which the
source IP addresses are fabricated (not the real IP address of
the attacker). An example of this type of attack is SYN Floods
attacks [30]. A recent Atlas security report shows that the
SYN Floods take the vast majority of the attack volume
in major DDoS attacks [2]. Existing solutions to protect
from SYN Floods, including dedicated DDoS mitigation
devices (e.g., Intrusion Prevention System (IPS) or firewall)
and third-party DDoS filtering cloud services [1], [4], either
have cost because of the need of dedicated hardware or trigger
privacy concerns by directing traffic to untrusted third parties.
In this paper, we introduce a novel approach for DDoS mit-
igation using collaborative networks and Network Function
Virtualization (NFV) technology.

NFV is an emerging technology where network functions
are implemented and provided in software, which runs on
commodity hardware [11]. The network functions are imple-
mented as software and deployed as virtual machines. As the
virtual machines run on general purpose commodity hardware,
NFV not only provides the benefit of elasticity, but also
reduces the cost by running on commodity platforms like
x86- or ARM-based servers instead of specialized hardware,
resulting in a much easier deployment and lower cost. At the
same time, NFV also introduces new opportunities for DDoS
detection and mitigation.

Traditional device-based DDoS mitigation is limited by
the computation capacity of the dedicated network functions,
such as firewall or IPS. Upgrading or adding new hardware
is costly and has a long cycle time. The usage of NFV
technology makes device upgrading and creation fast and
low cost, which results in a major opportunity for effective
and inexpensive DDoS defenses. In our previous work [18],
we introduced a dynamic local networking system based on
NFV technology which utilizes virtualized network functions
running on commodity servers to perform DDoS data filtering.
However, this solution may not be sufficient when the attack
strength exceeds the available hardware capacity. Seeking
external helping resources may be a viable solution.

In this work, we propose CoFence, a collaborative DDoS
mitigation network system which facilitates a “domain-helps-
domain” collaboration network. In this network, a domain can
direct excessive traffic to other trusted external domains for
DDoS filtering. The filtered clean traffic will be forwarded
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back to the targeted domain. Specifically, we focus on the
resource allocation problem when multiple requesters ask for
help. We design a fair and incentive-compatible resource allo-
cation method which provides an effective collaborative DDoS
defense with inherent reciprocal ecosystem. The resource allo-
cation scenario is further modeled into a multi-leader-follower
Stackelberg game by formalizing a two-level utility func-
tions for resource requesters and suppliers. More specifically,
the resource provider domains determines how much resource
to allocate to each requesters, and resource requester domains
decide how much resource to request from each provider.
We study the optimal strategies of all players and derive a
Nash equilibrium for the Stackelberg game. Our experimental
results demonstrate that our proposed solution can effectively
reduce the DDoS attack flow to the targeted server, and the
resource allocation is fair and provides incentive for domains
to maximally help other domains in need. The contributions
of this paper include: 1) A novel collaborative DDoS defense
network based on network function virtualization technology.
2) A dynamic resource allocation mechanism for domains so
that the system is fair, efficient, and incentive-compatible.
3) A multi-leader-follower Stackelberg game model to
study the resource allocation results of network domains.
4) An evaluation of our proposed solutions using simulation
to verify that the proposed solution is effective, fair, and
incentive-compatible.

The rest of this paper is organized as follows: Section II
discusses relevant background of the work and previously pro-
posed approaches. We then discuss our proposed framework in
Section III. Our resource allocation method and Stackelberg
game model are presented in Section IV and the evaluation
results are presented in Section V. Finally, we conclude the
paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section we will briefly summarize the existing DDoS
attack techniques, traditional DDoS defense strategies, and
DDoS defense using network softwarization technologies.

A. DDoS Attack Techniques

DDoS attacks can be roughly divided into two categories:
attacks based on IP spoofing and attacks based on real
IP addresses. When an attack is carried out using IP spoofing
techniques, typically bogus source IPs are used to hide the
true IP address of the attackers. An example of such type of
attack is SYN Floods [30].

Most DDoS attacks based on real source IPs utilize
botnets [28] as attacking source. A bot master orchestrates a
large number of compromised devices in the Internet to flood
the target. However, the attacking bot nodes can be detected
and blacklisted so that the overall cost of using bot nodes
is much higher than the spoofing-based attacks. Therefore the
botnet-based attack typically generates only a small percentage
of the entire attacking stream.

On the other hand, the IP spoofing-based DDoS attacks,
such as SYN Floods, can effectively hide the true identities
of attacking nodes and also require much less resources to

launch the attacks. For SYN Floods, the attacker fabricates a
large number of TCP SYN packets using spoofed source IPs
to initiate hand-shakings with the victim, which overflows the
backlog on the victim to prevent legitimate SYN requests from
being processed.

B. DDoS Defense Strategies

Many DDoS defense solutions have been proposed. They
can be divided into three categories: (1) solutions on the
source only; (2) solutions on the target only; and (3) solutions
involving intermediate routers.

Solutions on the source only block attack traffic from
the source domain, so that this traffic cannot get into the
Internet. For example, the BCP 38 standard [13] enforces
ingress routers to verify that the packets from its administered
network use legitimate source IP addresses from this network
and filters traffic that uses IP addresses outside its subscribed
range. This type of solution has proven to be effective and can
mitigate IP-spoofing attacks completely when all ISP gateways
adopt BCP38. However, it is not practical due to the lack of
incentives and corresponding law enforcement.

The solutions involving immediate routers include IP trace-
back mechanisms [19], and packet marking and filtering
mechanisms [29], [34]. This type of solutions is effective only
if there is sufficient number of participating routers along
the routing paths. It is also not practical due to the lack of
incentives and corresponding law enforcement. Also many
attacks traverse routers in different countries and it is very
difficult to trace the entire attack paths.

The third type of defense involves only the destination
infrastructure, for example a firewall or a proxy, that performs
filtering of an attack flow. However, dedicated high capacity
hardware for DDoS may not be practical for small/medium
enterprises due to the high cost. On the other hand, another
popular approach is to use commercial cloud-based third party
proxies (e.g., Arbor [1] or Prolexic [4]), where the excessive
traffic is sent to a DDoS filtering service. However, this
approach raises privacy concerns and also gives incentive
for the third party DDoS proxy service providers to perform
attacks in order to promote their protection products. A solu-
tion that is non-profit-driven and does not raise privacy concern
is thus needed.

C. DDoS Defense Using Network
Softwarization Technologies

In SDN the networking functions are separated into control
plane and data plane. The main idea of NFV is to replace
dedicated network appliances, such as hardware-based routers
and firewalls, with software that runs on commercial off-
the-shelf servers. Both SDN and NFV can lower the cost
of network deployment and increase network management
flexibility compared to traditional computer networks.

Several approaches have been proposed that use NFV for
DDoS defense. Fayaz et al. propose Bohatei [12], a DDoS
defense solution using SDN and NFV. Bohatei is designed to
cope with the expensiveness and proprietary hardware appli-
ances of the existing solutions. Bohatei uses its resource man-
ager component to assign available network resources to the
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defense VMs once suspicious traffic is detected. Since Bohatei
uses a limited amount of network resources (to launches VMs),
it can not be effective in case of attacks in which the incoming
traffic’s strength is heavier than what it can handle. In contrast,
in CoFence, in addition to utilizing NFV technology, attack
victims can receive external help from their collaborators in
terms of network resources.

Lim et al. [22] propose a SDN-based approach to overcome
legitimate looking DDoS attacks. In their work they investigate
a DDoS blocking application that runs over the SDN controller
while using the standard OpenFlow interface. The DDoS
blocking application runs on a SDN controller. The scheme
requires a large amount of communication between the DDoS
blocking application running on the SDN controller and the
server to be protected. The blocking application needs to coop-
erate with SDN controller which increases the dependency and
a high latency consecutively.

Guenane et al. [17] designed an architecture of cloud-based
firewall service using NFV technology and other network
virtualization capabilities to defend DDoS attacks. The cloud
architecture acts as an intermediary to filter the attack traffic
for the customer and transmits only legitimate traffic.

Chen et al. [33] propose SDNShield, a defense mechanism
against DDoS attacks on SDN control plane. They use spe-
cialized software boxes in order to improve the scalability of
ingress SDN switches to accommodate control plane workload
surges. The proposed approach has two main steps. They first
statistically filter legitimate flows from attack ones, and then
recover the false positives of the first filtration with in-depth
TCP handshake verification.

Beigi-Mohammadi et al. [8] propose CAAMP, an automated
DDoS attack mitigation system using hybrid-Clouds. CAAMP
is designed specifically to mitigate DDoS attacks on public
cloud applications using SDN and NFV techniques. The
main function of CAAMP is that once a suspicious traffic
is identified, a copy of the application’s topology on-the-fly
and transfer to an isolated environment in a private cloud.
A SDN controller is designed to to create the virtual switches
dynamically to redirect the suspicious traffic to a shark tank
until final decision is made.

Xu and Liu [32] propose a solution to detect DDoS
attacks leveraging on SDN’s flow monitoring capability. The
proposed approach utilizes measurement resources available
in the SDN network to dynamically balance the coverage
and granularity of attack detection. The proposed solution
addresses two issues. First, capture traffic rate and its diversion
from a regular traffic. Second, utilizing available resources in
the whole SDN network to monitor suspicious traffics.

Our previous work VGuard [14] proposes a traffic prioritiza-
tion algorithm to reduce the impact from DDoS attacks based
on real source IPs. Our another work VFence [18] is spe-
cially effective in reducing the impact from DDoS attacks on
IP-spoofing by creating additional virtual IPSs in NFV-enabled
networks. IPSs verify the source IP of the incoming traffic
through delegated handshaking and verified traffic will be
further forwarded to the server. Figure 1(a) shows the scenario
that an IPS handles traffic with legitimate source IP addresses
and Figure 1(b) shows the scenario that an IPS handles

Fig. 1. SYN Flood Attack overview: (a) a scenario on how the IPS handles
traffic with authentic source IP addresses; (b) a scenario how the IPS blocks
DDoS attacks with spoofed source IP addresses.

SYN-flood traffic with spoofed source IP addresses. However,
VFence is not effective when the attack volume is sufficiently
high to overwhelm the available local resource. CoFence can
overcome this obstacle by utilizing external resources in the
collaboration network. Hence, it further improves the DDoS
resistance level through collaboration networks.

III. COLLABORATIVE DDOS DEFENSE

In this section we present the network design of CoFence.
The purpose of CoFence is to provide a platform for domain
networks (e.g., an enterprise network or an ISP) to help each
other to enhance resistance against large-scale DDoS attacks.
With the help of NFV technology, each NFV-enabled domain
network can contribute their spare network resources to help
other domains in the network when needed.

In a CoFence network, each NFV-enabled domain contains
a virtual gateway and a virtual IPS. The purpose of the virtual
IPS is to detect and filter DDoS attacks. Due to the flexibility
of NFV, a virtual IPS can be created and its capacity can
be configured dynamically based on need. When a domain
joins CoFence, the domain can choose whether to share its IPS
with other trusted domains or not, and configure the maximum
external traffic it is willing to handle for other domains.

Figure 2 illustrates a case study of CoFence. When the
attacker launches a DDoS attack against the public server in
domain 1 and the attack traffic volume exceeds the maximum
capacity of the local IPS, some incoming traffic can be
redirected to its collaborator domains for filtering (this can
be done by updating the forwarding table in the gateway).
The SYN flood will be filtered remotely and only the filtered
traffic is forwarded back to domain 1.

Figure 3 illustrates the collaboration network topology. The
shared IPS resources from all domains are organized into a
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Fig. 2. A case study of collaborative DDoS defense.

Fig. 3. An example of the virtual network of collaborative network graph.

virtual network. Domains are connected to their trusted neigh-
bor domains. For example, a university may have multiple
campuses and they can trust each other. In this example,
domain i has four trusted neighbors (D1, D2, D4, D5) and
domain j has two trusted neighbors (D3, D5). A domain can
be trusted by multiple other domains (e.g., D5). Each domain
maintains a repository to store information about its neighbors,
including the neighbor’s credit (how much that neighbor has
helped in the past), the amount of resource the neighbor is
requesting, and the amount of resource offered to the neighbor.

Figure 4 illustrates a domain’s public server internal archi-
tecture equipped with CoFence. We explain every component
of this architecture in the next sections.

To be able to collaborate with other domains, a virtual
IPS should include the following functions:

1) Communication Component: This is used to communi-
cated with other domains in the network. The communica-
tion in the collaboration network can be divided into three
types: (a) request for help and offer to help; (b) request
to add new neighbors and respond to the neighbor adding
request; (c) request to remove neighbors and respond to
the neighbor removal request. For example, as illustrated
in Figure 5, domain j under attack sends a request to its
neighbor (domain 3) for helping with DDoS traffic handling,
and domain 3 responds with the decision regarding the amount

Fig. 4. Domain’s public server architecture.

Fig. 5. Request/Response flow of n j , n3.

it offers to help. After finishing the negotiation, domain j
directs part of the agreed-upon traffic flow to domain 3. Note
that all administration communication should be encrypted to
ensure confidentiality and integrity.

2) Resource Allocation: After receiving a help request,
a domain needs to decide how much of its spare resource it
should offer to the requesting neighbor. This decision problem
becomes non-trivial when there are multiple requesters at the
same time. A resource allocation component should be in
place to compute the optimal way for the resource alloca-
tion decision. Several design goals include how to make the
resource usage efficient, fair to new neighbors, and incentive-
compatible to encourage more generous sharing. The focus
of this paper is to design a resource allocation mechanism to
meet the above goals.

In the next section, we describe the resource allocation
mechanism that allows each domain to determine how much
it should help its neighbors.

IV. RESOURCE ALLOCATION MECHANISM

In this section, we describe the resource allocation model
for nodes in the CoFence network. We start from the statement
of the resource allocation design goals and then introduce the
resource allocation model to fulfill the design goals.

A. The Design Goals of Resource Allocation
Our design goals can be stated as follows. First of all we are

interested in designing a collaboration system which is fair,
incentive-compatible, and reciprocal. The fairness property
means the system can control the discrepancy of the received
help among different nodes so that starving can be avoided
for new participants. For example, a new participant with no
credit shall receive help when resource allows. The incentive-
compatibility provides rewards to participants who contribute
more to help others. i.e., the more a node contributes resource
to help others, the more help it receives in return when needed.
The reciprocal property provides a pair-wise mutual beneficial
relationship. For example, the more node x helps node y,
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TABLE I

SUMMARY OF NOTATIONS

the more node y helps x in return. In terms of performance
we aim at a system that is efficient, with low communication
overhead, and effective to defend against DDoS attacks. In the
next subsection, we discuss the mechanism design of the
resource allocation mechanism to fulfill the above design
goals.

B. Resource Allocation Optimization
In this section we model the optimal strategy for domains

to allocate resource when requested by other domains under
DDoS attacks. We model the CoFence network consisting of
n domains (nodes) using a graph G = {V, E}, where V denotes
the set of domains (nodes) and E represents the connections
in between pair of nodes if they have established a trusted
collaboration relationship. Domains (nodes) in the network
share excessive traffic with other trusted domains (nodes)
under DDoS attack. We use Ni to denote the set of neighbors
domain (node) of domain (node) i . i.e., they are connected to
domain (node) i directly by edges in G. When a domain (node)
i receives a request for help from its neighbor j , helping
resource will be allocated using a resource allocation algorithm
described in the next subsection. For convenience of presen-
tation, we use the term node as a synonym for the concept of
domain in the rest of this paper.

Let set Si (Si ∈ Ni ) denote the set of domains which request
for help from domain i . We use ri j to denote the the rraffic
handing volume that node i offers to node j , and a vector �ri

is used to represent the traffic handling volume that domain i
offers to help all the requesters. We use Rij to denote the
traffic handling volume that node j requests from node i when
it is under attack, where i ∈ N and j ∈ Si . Note that Rij is
controlled by node j and informed to node i . We use �R j

to denote the requested handling rates node j imposes to all
its neighbors. Our system requires that each node controls its
helping rate under the requested helping rate, i.e., ri j ≤ Rij .
Also the total helping rate should not exceed the spare resource
that the offering node is willing to share, i.e.,

∑
j∈Si

ri j ≤ r̂i ,
where r̂i is the maximum resource amount that node i is
willing to share with other. We list all notations in Table. I.

For the design of a reciprocal system, we use matrix
H = [Hij ]i, j∈N to denote the helping credit of nodes, where

Hij ≥ 0 represents the level of helpfulness from node i per-
ceived by node j . Note that the matrix H can be asymmetric,
i.e., Hij �= H ji . Our goal is to devise a resource allocation
protocol such that the helping resource is fairly distributed
to others based on their helpfulness in the past. To achieve
this goal, each node i solves an optimization problem that
maximizes the aggregated satisfaction level of its requesting
neighbors using the following formula:

arg max
�ri

Uh
i (�ri ) :=

∑

j∈Si

H j i Si j (ri j ) (1)

∑

j∈Si

ri j ≤ r̂i , (2)

0 ≤ ri j ≤ Rij , (3)

where Si j (ri j ) ∈ [0, 1] is the satisfaction level of the requesting
node j in response to the helping rate ri j from the node i .
We let Si j take the following form

Si j (ri j ) := log2

(

1 + k
ri j

Ri j

)

. (4)

where k ≥ 0 is the fairness factor, which controls the sensitiv-
ity of resource allocation thus impact the fairness of the sys-
tem. The concavity and monotonicity of the satisfaction level
indicate that a requesting node becomes increasingly pleased
when more help is received but the marginal satisfaction
decreases as the amount of help increases. The parameter H ji

in (1) suggests that the satisfaction level of a node j carries
more weight when it is a more helpful node to i in the past.

The utility Uh
i (.) measures the aggregated satisfaction level

experienced by node i ’s collaborators weighted by their help-
fulness in the past. Maximizing this utility allows a node to
provide more help to those from whom there was more help
in the past.

The constraint (2) shows that the total helping rate shall not
exceed the resource that the offering node is willing to share.
The constraint (3) means that the resource a node offers shall
not exceed the requested amount and shall not be a negative
value. We can see that when r̂i is sufficiently large, (2) is an
inactive constraint (which means the solutions are not at the
boundary set by the constraint), and thus the solution to (1)
becomes trivial and ri j = Rij for all j ∈ Si . The situation
becomes more interesting when (2) is an active constraint.
Assuming that Rij has been appropriately set by node j ,
we form a Lagrangian function Li : R

ni × R × R
ni → R

Li (�ri , μi , δi j ) :=
∑

j∈Si

H j i log2

(

1 + k
ri j

Ri j

)

− μi

⎛

⎝
∑

j∈Si

ri j − r̂i

⎞

⎠ −
∑

j∈Si

δi j (ri j − Rij )

+
∑

j∈Si

φi j ri j , (5)

where μi , δi j , φi j ∈ R+ satisfy the complementarity con-

ditions μi

(∑
j∈Si

ri j − r̂i

)
= 0, δi j (ri j − Rij ) = 0, and

φi j ri j = 0,∀ j ∈ Si .
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The optimization problem of (1) with constraints (2) and (3)
is equivalent to finding solutions for the following set of
equations:

arg max
�ri

Li (�ri , μi , δi j , φi j ) (6)

μi (
∑

j∈Si

ri j − r̂i ) = 0 (7)

δi j (ri j − Rij ) = 0, ∀ j ∈ Si (8)

φi j ri j = 0, ∀ j ∈ Si (9)

We maximize the Lagrangian with respect to �ri ∈ R
|Si+ | and

obtain the first-order Kuhn-Tucker condition:

k H ji

kri j + Rij
= μi + δi j − φi j , ∀ j ∈ Si .

When (2) is active (μi �= 0) but (3) is inactive (δi j = 0 and
φi j = 0), we can find an closed-form solution supplied with
the equality condition

∑

j∈Si

ri j − r̂i = 0, (10)

and consequently, we obtain the optimal solution

r�
i j := H ji

∑
u∈Si

Hui

⎛

⎝r̂i + 1

k

∑

v∈Si

Riv

⎞

⎠ − 1

k
Ri j . (11)

When the constraint (3) is active, the optimal solution is
attained at the boundaries. Due to the monotonicity of the
objective function, the optimal solution r�

i j is attained when
all resource budgets are allocated, i.e., constraint (2) is active.

Remark 1: We can interpret (11) as follows. The solution r�
i j

is composed of two components. The first part is a proportional
division of the resource capacity r̂i among |Si | collaborators
according to their compatibilities. The second part is a linear
correction on the proportional division by balancing the
requested sending rate Ri j . It is also important to notice that

by differentiating r�
i j with respect to Ri j , we obtain

∂r�
i j

∂ Ri j
=

1
k (

Hji∑
u∈Si

Hui
−1) < 0, suggesting that, at the optimal solution,

the helping rate decreases as the recipient sets a higher
requesting rate. If a node wishes to receive higher helping rate
from its neighbors, it has no incentive to overstate its level of
request. Rather, a node j has the incentive to understate its
request level to increase r �

i j . However, the optimal solution is
upper bounded by Ri j . Hence, by understating its request Ri j ,
the optimal helping rate is achieved at Ri j .

To compute the numerical solution to optimization prob-
lem (1) under all conditions, each domain can use an iterative
computation method described in Algorithm 1 to find a solu-
tion to optimize their utility.

The overall idea of Algorithm 1 is to start from a feasible
solution (line 8). It then continuously move the resource from
the node with the lowest marginal gain to the node with the
highest marginal gain till no more move is possible to increase
the overall utility or the changing step is sufficiently small.

Algorithm 1 Optimal Resource Allocation for Domain u
1: // This algorithm describes the algorithm for each domain u

to find the optimal resource allocation given requested
amount and past credit.

2: Inputs :
3: Nu : the set of neighbors of domain u that are trusted by

domain u
4: �Hu: helping credits for all neighbors of domain u
5: �Ru : requested helping resource needed by the neighbors of

domain u
6: �ru : allocated helping resource for the neighbors of

domain u
7: r̂u : the total available resource for domain u.
8: U : the utility function.
9: // Iteratively compute the amount of resource allocated

to requested peers given their requested amount till the
aggregated satisfaction is optimal.

10: �ru ⇐ {ru j = r̂u Ru j∑
v Ruv

} // initially all resource is distributed
proportionally regarding to request.

11: �r ′
u(�ru) ⇐ {r ′

u j |r ′
u j = Hju

Ru j +ru j
,∀ j ∈ Nu} // the marginal

growth.
12: �r ⇐ r0 // initialize the changing step
13: while �r > ε do
14: a ⇐ Highest(�r ′

u) // index of the domain with the highest
marginal gain except at the upper bound

15: b ⇐ Lowest(�r ′
u) // index of the domain with the lowest

marginal gain except at the lower bound
16: if a �= b then
17: �r = min(�r, Rua − rua, rub) // adjustment step to

keep result in boundary
18: // if moving �r resource from b to a improves the

overall utility then move it; otherwise reduce the step
size by half.

19: if U(rua + �r, rub − �r) − U(rua, rub) > 0 then
20: rua = rua + �r
21: rub = rub − �r
22: else
23: �r = �r/2
24: end if
25: end if
26: end while
27: return �ru // helping resource domain u allocates to

neighbors

C. A Stackelberg Game Model for CoFence

The previous optimization problem gives solution on how
much resource a provider domain u shall allocate to maximally
satisfy its requesting neighbors. A requesting domain j has
another degree of freedom to choose its level of requested
resource amount (which may be different from its actual
desired resource amount). Let Ru j denote the amount of help
that domain j requests from domain u. The next question
is how much resource a domain j shall request its neigh-
bors in order to obtain sufficient help? In addition to the
aggregated satisfaction utility optimization problem controlled
by the resource offering domains described in Equation (1),
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the optimization at this level is a second tier optimization
problems controlled by the resource requesting domains. The
objective of an under-attack node j is to choose �R j so that its
utility Ur

j : R
n j
+ → R is maximized, i.e.,

arg max
�R j

Ur
j (

�R j ), (12)

subject to the constraint that the requested resource is non-
negative, i.e.,

Ru j ≥ 0, ∀u ∈ N j

Let Ur
j (

�R j ) take the form of

Ur
j ( �R j ) :=

∑

u∈N j

log2(1 + r�
u j /R̂ j ), (13)

where r�
u j is the optimal solution by optimizing (1); R̂ j is the

amount of resource domain j actually needs. The log function
indicates that the requesting domain prefers a more distributed
helping resource from multiple domains with less load on each
helper, than fewer helping resources with more load on each
helper. This is a reasonable assumption since as more flows
are distributed to multiple destinations, the lower the chance
of traffic jamming on some routers. The utility optimization
can be further expanded as follows.

arg max
�R j

∑

u∈N j

log2

(

1 + r�
u j

R̂ j

)

. (14)

subject to,
∑

u∈N j

Ru j ≤ R̂ j (15)

Ru j ≥ 0, ∀u ∈ N j (16)

where (15) indicates the received helping offer should be
no more than the actual need. In this game the change of
the requested resource �R j of domain j will have impact to
the choice of the optimal solution from its neighbors (r�

u j ),
which in turn influence the utility of j . All domains will
solve their coupled optimization problems by tuning their
�R j till all domains reach their local optimal. This game can

be seen as a Multi-leader-follower Stackelberg Game [9].
Generally, in a Stackelberg game, there are one or more
distinct players called the leaders, who optimizes the upper-
level problem, and a number of remaining players called
the followers, who optimize the lower-level problems jointly.
In particular, the leaders anticipates the responses of the
followers, and then uses this ability to select their optimal
strategy. At the same time, all followers select their own
optimal responses parameterized by the leader’s decision.
In our case, the resource requesting domains are the leaders
and the resource suppliers are the followers. The leaders will
find their optimal requesting amount and the followers will
find their optimal offering amount to each requester based on
their credits and the requested amount.

Definition 1: The multi-player non-cooperative DDoS def-
ense resource allocation game is a multi-leader-follower

Stackelberg game with the followers’ utility functions defined
by Formula (1) and the leaders’ utility function defined by (12).

Given there are M resource requesters and N resource
providers, the Stackelberg-Nash equilibrium is a situation
where none of the resource requester can improve its utility by
changing its requested amount alone. For any given requests
set, the followers will reach a Nash equilibrium in every
scenario. We now give a rigorous definition of the equilibrium.

Definition 2: The Nash equilibrium of the M leader N fol-
lower resource allocation Stackelberg game is an M + N tuple
( �R∗

1 , ..., �R∗
M ; �r∗

1, �r∗
N ) such that,

�R∗
j ∈ arg max

�R j

∑

u∈N j

log2(1 + r∗
u j/R̂ j ), ∀ j

�r∗
i ∈ arg max

�ri

∑

v∈Si

Hv i log2

(

1 + k
riv

R∗
iv

)

, ∀i

Theorem 1: When (2) is active but (3), (15) and (16) are
inactive, a Nash equilibrium for the Stackelberg game can be
computed as follows,

R∗
i j = r∗

i j = H ji
∑

v∈Si
Hv i

r̂i . (17)

Proof: When (15) and (16) are inactive (solutions are
not at the boundaries), we first take the derivative of the
utility function of the leader domain j over the requesting
amount Rij . We have,

∂Ur
j (

�R j )

∂ Rij
= 1

R̂ j + r�
i j

∂r�
i j

∂ Rij
(18)

= 1

R̂ j + r�
i j

(
H ji

∑
u∈Si

Hui
− 1

)

< 0 (19)

We can see that over stating Rij decreases the utility of the
leader domains. To obtain the maximized utility, the leader
domain j shall understate the requesting amount Rij till the
best response from domain i meets the requested amount,
i.e., r�

i j = Rij . By definition, the Nash equilibrium state means
all domains are playing their best strategies, i.e.,

�R∗
j ∈ arg max

�R j

∑

u∈N j

log2(1 + r∗
u j/R̂ j ), ∀ j

R∗
i j = r∗

i j , ∀i, j

From (11) we get,

R∗
i j = r∗

i j = k

1 + k

H ji
∑

v∈Si
Hv i

⎛

⎝r̂i + 1

k

∑

v∈Si

R∗
iv

⎞

⎠, ∀i, j.

(20)

Give that (2) is active, we have
∑

v∈Si
R∗

iv = ∑
v∈Si

r∗
iv = r̂i .

Replace
∑

v∈Si
R∗

iv with r̂i in (20) and we get (17). �

D. The Performance of the Stackelberg Game

An alternative problem formulation is to assume that there
exists a coordinator that can realize an optimal resource allo-
cation by directing resource flows from one node to another.
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The optimization problem can be formulated as following:

arg max
e

Uo(e) :=
∑

j∈M
H j log2

(

1 + k
e j

R̂ j

)

(21)

∑

j∈M
e j ≤

∑

i∈N
r̂i , (22)

0 ≤ e j ≤ R̂ j , (23)

where e j is the total received resource by node j ; H j is the
accumulated helping credit that node j has helped all other
nodes in the past. The Oracle collects shared resource from
all resource providers and optimally allocated to the requesters
based on their credit and needs.

The above optimization problem has a trivial solution
e j = R̂ j , ∀ j ∈ M when the resource is abundant,
i.e.,

∑
i∈M R̂i ≤ ∑

i∈N r̂i . Otherwise a closed-form optimal
solution can be obtained as follows under the condition that
constraint (22) is active and (23) is inactive (solutions are not
at the borders):

e�
j = H j

∑
u∈M Hu

⎛

⎝
∑

i∈N
r̂i + 1

k

∑

j∈M
R̂ j

⎞

⎠ − 1

k
R̂ j (24)

From (17) we can get the received helping resource by node j
under the Stackelberg-Nash Equilibrium can be computed as:

e∗
j =

∑

i∈N
r∗

i j =
∑

i∈N

H ji
∑

v∈M Hv i
r̂i . (25)

The reasons for not adopting the optimal mode include:
1) scalability issue with the centralized model; 2) single point
of failure; 3) difficulty to deal with dishonest nodes providing
false information to the coordinator. We will compare the
performance of the Stackelberg game with the optimal model
in our evaluation section.

E. Helping Credit Computation

To build an incentive-compatible, and reciprocal resource
allocation system, it is important for a node to track how much
a neighbor node has helped in the past. We call it helping
credit. In our model, we use the cumulative helping resource
a node have offered in the past to represent the helping credit.
Each node tracks the helping credit from its neighbors so
that tracking the helping resource is fully distributed and the
measured helping credit is private to each node.

Let ri j (t) denote the helping data rate that node i offers to
node j at time t , then node j computes the helping credit of
node i at time t0 using the following equation:

Hij (t0) =
∫ t0

−∞
ri j (t)λ

(t0−t)dt (26)

A node gains credit by providing help to other nodes in the
network. The credit in the past is being “forgotten” with an
exponential speed λ, where λ ∈ (0, 1] is called a forgetting
factor. A smaller λ represents faster forgetting speed. If λ = 1
then all past credits will be remembered and carry the same
weight as new credits. Note that when a new node joins the
network, its credit can start from a small value to all its

Fig. 6. An example of the protocol for requesting help.

neighbors. Given the credit of node i perceived by j at a
historical time t ′ = t0 − �t is known to be Hij (t ′), then we
can compute the credit at time t0 using the following equation:

Hij (t0) =
∫ t ′

−∞
ri j (t)λ

(t0−t)dt +
∫ t0

t ′
ri j (t)λ

(t0−t)dt

=
∫ t ′

−∞
ri j (t)λ

(t ′−t)λ(t0−t ′)dt +
∫ t0

t ′
ri j (t)λ

(t0−t)dt

= λ�t Hi j (t − �t) +
∫ t0

t0−�t
ri j (t)λ

(t0−t)dt (27)

Equation (28) indicates that the helping credit of a node at
any time (e.g., t0) can be computed incrementally based on
the credit at an earlier time (e.g., t ′). Therefore the credit
computation requires fixed memory and storage.

Alternatively, let the time at which a new node i joins the
network to be 0 with initial credit ci , and the current time be
a relative time T after the initial joining time, then the helping
credit perceived by j can be computed as follows:

Hij (T ) = λT ci +
∫ T

0
ri j (t)λ

(T −t)dt (28)

F. Requesting for Help
As stated in Remark 1, a node under attack does not have

incentive to overstate its level of request. To effectively inform
its collaborators about the desired help, a node under attack
can broadcast the helping requests use the following algorithm.

As described in Algorithm 2, when a domain u detects
DDoS attacks, it sends requests for help to its trusted neigh-
bors sequentially, starting from the neighbor with the highest
helping credit. When sufficient helping resource is achieved,
the requesting process terminates. After negotiation, domain u
directs the traffic flows to the helpers. At last, each domain
updates the credit of its neighbors to reflect the up-to-date
status after interval �t . Figure 6 illustrates a case study of
the process for help request. Node n1 sends requests to its
neighbor nodes n2, n3, · · · , nn sequentially.

V. EVALUATION

In this section we present our experiments evaluating the
proposed collaborative model. We first explain our experimen-
tal setup and then the results on the performance of the model.
We conducted a series of experiments on different case studies
to evaluate the performance of the model. We also did an
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Algorithm 2 Seek Help by Node u
1: // This algorithm describes the algorithm for a node to

broadcast its requested help to its neighbors. It is triggered
when DDoS attacks are detected.

2: Inputs :
3: Nu : the set of neighbor domains that are trusted by

domain u
4: �Hu: helping credits for all neighbors of domain u in

descending order
5: Au : required helping resource needed for domain u during

DDoS attack
6: �t : the time interval to recompute the credit of all

neighbors
7: // Send request for help to each trusted neighbor ordered

by their level of helpfulness in the past.
8: for each node v in �Hu do
9: h ⇐sendRequest(v,Au) //v computes resource offer

using Eq. (1)
10: Au = Au − h //Reduce the required amounts after

receiving help
11: if Au = 0 then
12: break the for loop
13: end if
14: end for
15: RedirectTraffic to helpers
16: set timer (�t , “UpdateCredit(Nu)”) //Update neighbors’

helping credits periodically (every �t)

experiment to evaluate the impact of the attack on nodes with
different level of generosity and amount of reciprocal help that
they receive from each other.

A. Simulation Setup
Since the vast majority of DDoS attacks is SYN Flood

attack, we simulate SYN Flood attack in our experiment.
We use Discrete Event Simulation (DTS) to build the environ-
ment. A DTS framework models the operation of a network
system through processing a sequence of discrete events
ordered by time. More specifically we used SimPy [5] frame-
work as our simulator. SimPy is a process-based discrete-event
simulation framework based on standard Python. The packets
arrival are simulated using Poisson process.

We simulate a collaboration network with domains (nodes)
sharing their virtual IPS DDoS data filtering capability.
We defined two types of network traffic in the simulation: legit
traffic, which is the normal traffic that a node receives during
the normal situation; and attack traffic, which is the packets
flow that a domain receives when it is under attack. We set the
packet arrival rate parameter λ to 1K packets/second for legit
traffic and 6K packets/second for the attack traffic. In addition,
We set the maximum packet processing rate for each virtual
IPS to be 2K packets/second by default, and the buffer size to
be 10.

B. The Computation of Helping Credits

First of all we evaluate the helping credit computation that
one domain gains based on its helping effort to other domains.

Fig. 7. Helping credit measurement: (a) the helping credit of node j perceived
by node i for a fix helping rate H = r j i = 1K /second at different λ settings;
(b) the helping credit of node j perceived by node i for a fixed value of
λ = 0.6 and different settings of help rate (H ) from node j .

Fig. 8. Case studies: (a) attack target ni is not equipped with CoFence;
(b) ni is using CoFence and has one neighbor; (c) attack targets n1 − n5
share one neighbor node (ni ); (d) attack target ni has a list of neighbor nodes
n1 − nM in the network.

Equation (26) is used to compute the credits. We set up two
nodes i and j . Node i is under DDoS attack and node j
provides help to node i . Node j provides help to handle traffic
with data rate r j i . At first we fix r j i to 1K/second and observe
the change of credit of node j perceived by node i under
different setting of parameter λ. Figure 7(a) shows that under
all λ settings the the helping credits increase with time at the
beginning and converges to stable. A higher λ leads to a higher
helping credit value.

In the next experiment, we fixed the value of λ to 0.6
and let H = r j i increases from 1K to 4K with step 1K.
Figure 7(b) shows that the more generous that node j helps
node i , the higher helping credit it gains.

C. Case Studies

In the next set of experiments we use four case studies,
as shown in Figure 8, to evaluate the efficiency of our proposed
CoFence model against DDoS attacks. Figure 9 (a) shows the
traffic trace we use in these case studies. We can see that
the normal traffic to both nodes is set to be 1K /second
while the attack traffic to node ni is 6K /second. For the proof
of the concept, we only simulate a short period of DDoS attack
flow from time 10s to time 20s.

1) Case Study 1: In the first experiment we measure the
packets dropping rate in the network when CoFence is not
in place. The corresponding case study is in Figure 8 (a).
In this scenario node i is under attack. Since node i can only
handle a data rate of 2K /second, much traffic to node i has to
dropped. Figure 9 (b) shows the packet dropping rate at both
node i and node j . We can see that the drop rate on node i
increases significantly under attack. In contrast, node j handles
its incoming network traffic which is half of its capacity with
minimum packets drops.
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Fig. 9. Incoming packet and drop rate for case study (a).

Fig. 10. Average dropping rate and processing delay for case study (b).

2) Case Study 2: In the second experiment we evaluate the
efficiency of CoFence when the attacked target (node i ) has
one neighbor (node j ) in CoFence. The case study is illustrated
in Figure 8 (b). In this case, when node i is under attack,
node j can offer its spare resource to process part of the
excessive data flow from node i so that it can reduce the
dropping rate on node i . Figure 10 (a) illustrates the packet
dropping rate on both nodes. We can see that the drop rate on
node i is reduced with the help of node j . In this case, node j
offered 1K /second processing power to node i . Note that in
this case node j ’s packet incoming rate reaches its processing
capacity, a small portion of the packets are dropped.

We also study the average processing delay for legit packets
arriving at both node i and j . We define the processing
delay to be the time elapsed from a legit packet’s arrival at
a gateway to its arrival at the online server. Figure 10 (b)
shows the average processing delay for packets arriving at both
nodes i and j . Since every node processing rate is 2K packets
per second, the average process time (in a second) per packet
is 0.5ms or slightly higher than the nodes’ processing time
when no node is under attack. When attack happens, a packets’
processing delay at node i increases to 1.8ms − 2.3ms.
At node j we have two types of packets to be processed:
node’s j ’s regular incoming packets and packets coming from
node i . The delay for incoming regular packets follows the
same delay as node i , but the computed delay for received
packets from node i includes the redirection time, which
includes the transmission time and propagation time between
two domains. For the simplicity we assume that the average
redirecting packets from one domain to another takes 1ms.
Therefore, the delay for this packets is 1ms higher (ni → n j ).

3) Case Study 3: In the third experiment, we evaluate the
case in which 5 nodes (n1 ∼ n5) are under attack and all of
them share one helper node (ni ) (Figure 8(c)). We stress all
nodes with DDoS traffic 6K /s on each node. Under this case

Fig. 11. Amount of help that nodes 1 − 5 receive for different available
capacities of node i (case study (c)).

Fig. 12. A fully-connected graph to evaluate the nodes’ reciprocal help.

all attacked nodes turned to node i for help. We let the credits
for nodes 1−−5 range from 0 to 80 with step 20. Each round
we let the node’s i maximal shared capacity be 1K, 10K, 20K,
and 25K. Figure 11 shows the amount of received help from
node i . We observe that when node i has more free capacity,
attacked nodes receive more help. The higher a node’s credit is,
the more resource it received from node i . When the available
free capacity is set to 25K, all the nodes including the node
with 0 credit will receive all they request. This demonstrate
the efficiency and fairness of the resource allocation. i.e., all
available resource will be utilized and no node should starve
if resource is available.

4) Case Study 4: In the fourth experiment we evaluate
the impact of the number of neighbors (helper nodes) for the
attacked node. Figure 8 (d) illustrates the case study for this
experiment. In the network node i has m neighbor nodes in the
collaboration network. In our experiment we start from m = 1
and increase m by one in each round. We measure the packet
dropping rate of node ni is under DDoS attack. Figure 13 (a)
shows that after adding the five helper nodes, the drop rate
of node i reduces to 0. This implies that more neighbors a
domain has, the more DDoS attack resistant it is.

D. Fairness and Incentive Compatibility

Finally we evaluate the fairness and incentive compatibility
of the proposed resource allocation mechanism. The case study
is a fully connected network consisting of 10 nodes as shown
in Figure 12 (a). We let each node in this network provide
different level of help, we name it generosity level, to others
ranging from 0 to 4.5K packets per second. For example,
a node with generosity level of 0 provides no help to others,
while node with generosity level 4.5K help others to handle
at most 4.5K packets per second. Table II lists the generosity
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TABLE II

NODES’ GENEROSITIES (HELPING AMOUNT)

Fig. 13. (a) the impact of different number of nodes (1−6) in a attack target
node’s locality on packet drop rate (case study (d)); (b) reciprocal help when
different number of nodes are under attack and nodes have different levels of
generosity (the amount of traffic that nodes can help others to handle when
other nodes are under attack).

level for each node. We can see that the maximum external
helping resource a node can receive is 22K/s.

Our attack scenario in this experiment is to randomly attack
a number of nodes and evaluate the amount of help those nodes
can receive from other nodes. In each round we randomly
select ω number nodes and attack each selected nodes with a
DDoS packets rate of 18K /s. We set ω with different values
from 1 to 9. We repeat each round 1000 times to compute the
average percentage of received help from others. Figure 12(b)
illustrate the helping map when ω is 1, 2, 3, and 4.

Figure 13 (b) shows the received helping rate for each node
under all ω settings. We can see that when there is only one
node under attack, the only node will receive sufficient helping
resource from other nodes, even the attacked node has no
credit. This reflect the fairness of this resource mechanism.
a.k.a., no node should starve if there is sufficient resource.
However, when multiple nodes are under attack, the nodes
with higher generosity also receive higher amount of helping
resource in return. This reflects the incentive-compatibility
of the design, where participants are encouraged to be more
generous in terms of helping others.

E. Stackelberg Game Evaluation

In this section, we evaluate the performance of the Stack-
elberg game model and compare it with the optimal model.

1) Experiment Setup: We use a case study with 5 domains
(n1, · · · , n5) as shown in Figure 17(b) as our experimental
scenario. The domains are set with different levels of gen-
erosity (the amount of resource that they share with others).
Table III shows the amount of resource each domains shares
ranging from 1K to 3K . The experiment was carried out in
many rounds. In each round we let 4 nodes under DDoS attack
and one node (helper) provide resource to help others. Each
node has equal chance to be the resource provider. The desired
helping resource for each attack target was 1.5K .

TABLE III

THE GENEROSITIES OF NODES (SHARED RESOURCE AMOUNT)

Fig. 14. The resource allocation results with different impact factor settings
of k = 1, 4, 8 and 12 .

2) The Impact From the Fairness Factor: In this experiment,
we study the impact from the fairness factor k that has been
used in equations (4) and (21). Note that the coordinator in the
optimal model and the resource providers in the game model
use the same resource allocation utility function except that
they have different helping credit evaluation methodologies.
In the optimal model the coordinator keeps track of the
helping credits of all participants, while in the game model
resource providers track the helping credits of their neighbors
only. In our experiment, all helping credits start from small
values and are updated through iterative interactions among
participants.

Figure 14 (a) to (d) show the received helping resource of
all participating nodes under different fairness factor settings
k = {1, 4, 8, 12}, respectively. We can see that for all nodes the
received help increases with their accumulated contributions.
The higher k value is, the more equality is shown among
all participating nodes. When k = 1 we can see the sign
of starving for nodes with low shared resource and when
k = 12 the difference of received help among all nodes are the
smallest. From the above results we can see that the fairness
factor k can be used to tune the equality of nodes in the
networks.

3) The Nash Equilibrium for the Stackelberg Game: In this
experiment we run the Stackelberg game among the 5 partici-
pants and observe their best responses in each iteration and the
formation of the Stackelberg-Nash Equilibrium. Each resource
requester will adjust their requested resource Ri j based on
the allocated resource ri j to achieve improved utility in the
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Fig. 15. (a) Requested resource by nodes 1, 2, 3, 4 from node 5 in
20 negotiation rounds; (b) Allocated resource from node 5 to nodes 1, 2, 3, 4
in 20 negotiation rounds.

Fig. 16. (a) Comparison of amount of received help by domains n1, · · · , n5
using game-model and optimal allocation; (b) An example network structure
composed of 5 domains n1, · · · , n5.

next round. Figure 15 shows the changes of the allocated
resources and the requested resources after each negotiation
iterations in 20 rounds. We can see that the requested resources
set by the game leaders converge to Nash Equilibria and so
do the allocated resources set by the game followers.

4) The Performance of the Stackelberg Game: In this exper-
iment we compare the performance of the Stackelberg game
model with the optimal model. We ran both models under the
same setting with k = 12 and as of Table III. Figure 16(a)
shows that the amount allocated resources to each node under
the Stackelberg game assembles the optimal allocation. The
game model results in a further equalized resource allocation.
From this result, we can see that the distributed Stackelberg
game model can achieve near optimal resource allocation
while avoiding the shortcomings from the centralized model.

VI. DISCUSSION AND SECURITY THREATS

Although the purpose of CoFence is to facilitate a collab-
oration framework among NFV-based peer domain networks
and protect networks against DDoS attacks, CoFence itself
may be the target of attacks. In this section, we discuss a few
potential threats and issues to CoFence and our future plans
for addressing the issues.

A. The Cost of CoFence

In this section, we discuss the cost of the CoFence. Our
discussion covers network communication overhead, finan-
cial (economic) cost, and the cost of computational resources.

Fig. 17. Network communication overhead: (a) shows that incoming attack
traffic to domain n1 and outgoing help requests from this domain; (b) The
CoFence’s network is on the different network slice as the traffic network.

1) Communication Overhead: Regarding the network band-
width usage and domains communication, we have embed-
ded a component which handles all the communication with
other domains in the collaborative network. Messages passing
through the communication overlay include: help-requests to/
from neighbors, and responses from/to neighbors. It enables
domains from different vendors to communicate through a
common protocol. We discuss the interoperability challenge
of CoFence in more details next.

We like to emphasize that the CoFence’s communication
overhead (negotiating help requests and responses) among
domains do not have a significant impact on the communica-
tion network. To demonstrate the overhead of communication,
we conducted an experiment on a network with 10 domains
as shown in Figure 12(a). Each domain has the capacity of
1K to process incoming packets. A domains sends requests
for help when the incoming packets exceed its capacity and
sends requests for the termination of help it can handle all
traffic. We set domain n1 to be under attack and it communi-
cates with other domains to seek help. We set the number
of packets needed for every negotiation to 10 packets per
pair. Figure 17(a) shows the traffic volume and the CoFence
negotiation traffic on domain n1 under attack. We recorded
that the amount of communication overhead between domain
n1 and other nodes is about 180 packets in total, which is a
trivial number compared to the normal traffic.

We should also mention that the CoFence communication
can be done through a “separate” reserved network channel.
This can be done through the NFV network slicing. This way
we can ensure that the CoFence collaboration is possible under
DDoS attacks. Figure 17(b) show an example of the CoFence’s
network slicing.

2) Computational Resources and Financial Cost: One main
benefit of CoFence is that it allows domain to utilize
trustable external resources to help combat DDoS attacks.
This way domains can handle much larger volume of DDoS
attacks. Compared to the cloud-based DDoS protection proxy
approaches [1], [4], CoFence is a network resource exchange
network that can be free of financial cost, while the cloud-
based DDoS mitigation services typically induces high cost.
Regarding the computational resources, each domain has full
control on the amount of resource it is willing to share. The
shared resource shall not exceed the spare resource it has so
that it does not negatively impact its native operation.
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Fig. 18. Quality of Service (QoS) component architecture.

B. Service Agreement and Quality of Service

Since domains provide services to other domains, they
need to ensure that other domains have agreeed to the same
terms. Domains should contract with others to receive service.
Service contracts can be customized for two domains or it may
be a same agreement among all domains [7], [15]. Therefore,
before domains start interacting with each other, they reach
agreement on how they are going to provide service.

Quality of Service (QoS) is another important metric for
the transport of traffic with special requirements and can be
a part of the service agreement [21]. Network QoS can be
influenced by different factors, both architectural and tech-
nical. Architectural factors include reliability and availability
of service, latency, etc. Technical factors include scalability,
effectiveness, and maintainability. Many things can happen to
traffic packets as they travel from a domain to other domains
and can result in a set of problems. For example, a domain
should serve a specific amount of packets or packet processing
delay should be less than a specific time otherwise packets
drop. The agreement can also guarantee the packet dropping
probability and/or error rate [25], [31]. Domains that provide
service to others should guarantee a level of processing quality
for an incoming traffic flow from other domains. In order to
address this challenge we can apply networking Quality of
Service standards [27]. Figure 18 shows our designed QoS
component embedded into CoFence’s architecture.

Our designed QoS architecture has two main components:
Global QoS Measures and QoS Evaluator. Technically, per-
ceived quality of service measures depend on multiple factors
which include the designing of collaborative networks and
networking such as packet delay, number of dropped packets,
and error rate in terms of packet processing. Considering
these measures, our QoS component evaluates the quality of
received service from other domains and update the credits.
The measured QoS has a direct impact on domains’ credits.
If a domain provides high quality service, it receives a higher
credit from other domains.

C. Data Privacy and Protection

The CoFence model is mainly based on interactions and
collaborations of different domains. One of the main con-
cerns of collaborating with other domains is how to make
sure that their network traffic is protected. More specifically,
processing a domain’s packets by other domains can raise data
privacy concerns. This can result in identity theft and private
information leakage. Since our model is proposed to protect
domains against SYN Flood attack, the only thing that other
domains can have access during collaboration is SYN packets
and these packets do not contain any sensitive information

causing private information leakage. Therefore, this is not a
concern for our model.

D. Scalability
Since there might be new domains joining the collaborative

network in order to serve/receive service the network will
grow by time. Scalability can thus be a crucial challenge for
CoFence. In our model, we define the scalability as the ability
of handling a growing amount of incoming packets to domains
and the potential of the collaborative network to be expanded
in order to accommodate that growth. Therefore, we need
to make CoFence scalable, so that domains can collaborate
regardless of how big the network and the amount of incoming
packets are. In order to address such challenge, we need to
use networking technology solutions (hardware-based offload
and network technologies) focused on eliminating potential
network bottlenecks associated with network packet process-
ing [10], [23].

E. Robustness
CoFence and its credit evaluation model can effectively

improve network collaboration and protect networks against
DDoS attacks. However, the credit evaluation itself may
become the target of attacks and be compromised. In this
section, we describe common attacks and provide defense
mechanisms against them.

1) Domain Server’s Vulnerabilities: can raise some critical
security and privacy concerns. Among all network security
vulnerabilities insecure network architecture and unprotected
communication lines (communication overlay component) are
the most important ones. To address such vulnerabilities we
can define a set of security requirements as a part of service
agreement and new domains should fulfill the requirements
before they join the network. These requirements can include
careful system maintenance (e.g. applying software patches),
deployment (e.g. the use of proper firewalls, access controls
and encryption equipment) and auditing (both during develop-
ment and throughout the deployment lifecycle) to protect the
network against possible vulnerabilities.

2) Collusion Attacks: it occurs when a group of domains
(malicious ones) cooperate together to do a set of harmful
attacks to other domains. There are two main collusion attacks.
The first scenario is one in which a group of malicious domains
lie to a normal domain (let us call it domain A) that requests
help. For example, if the incoming packet flow from domain
A to malicious ones is not from a DDoS attack, they report
it as an attack and vice versa. The solution for this attack
can be verifying the reports from helper domains. The second
potential attack is when colluding malicious domains do not
serve a specific domain in case of receiving help request from
that domain. This way the colluding domains can shut down
the victim domain. This attack scenario can be addressed
by a well prepared service agreement and quality of service
measurement.

3) Betrayal Attacks: it occurs when a normal domain
(a domain with high credit) suddenly turns into a malicious
one and starts sending false help requests to all neighbor
domains. The collaboration performance can be influenced by
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this attack. We already addressed this attack in our model. The
amount of impact that a domain can have on other domains in
the network has a direct relation with its gained credit through
its interaction with others. In our model, domains can not gain
a high credit unless they behave safe and normal for a long
time. On the other hand, they also lose their credit if they
change their behavior from normal to malicious.

4) Tamper Attack: it occur when a user manually manip-
ulates their local data and credits in order to mislead the
system or other users. In CoFence, the only way that a domain
gain credit is to help others when they are under attack. The
credit of a domain is evaluated and stored by other domains.
Thus, because domains do not have access to their cred-
its they cannot manually manipulate their credits. However,
if a domain (let’s call it A) manipulates another domains’
credit (let’s call it B) on its domain, it will only change its
resource allocation to other domains without benefiting itself.
Therefore, there is no incentive for A to change the credits of
other domains. This indicates that CoFence is resilient against
Tamper attack.

F. Network Interoperability
Since different domains can use different infrastructure and

software, it can cause inconsistency. In order to establish
a fully effective collaborative network, domains should be
able to interact with each other regardless of their hardware
heterogeneity. Our model can use a network interoperability
standard to achieve network interoperability, so that domains
can communicate (requesting/receiving help) [16], [24]. The
standards include application, data, and management interop-
erability.

VII. CONCLUSION

In this paper we propose CoFence, a collaborative network
to defend against DDoS attacks based on network virtualiza-
tion technology, where domain networks under DDoS attack
can redirect excessive traffic to other collaborating domains
for filtering. Specifically we focus on the resource allocation
mechanism that determines how much resource one domain
should offer to the requesters so that the resource is distrib-
uted efficiently, fairly, and with incentives. In order to make
the resource allocation optimized, we utilized the stakelberg
game model for collaboration. To make the collaboration fair,
we proposed a QoS framework under which domain networks
should agree with. Our evaluation results demonstrate that
the collaborative DDoS defense can effectively reduce the
impact from the attack and the proposed resource allocation
mechanism can meet the design goal. In order to make our
credit evaluation process more fair and effective we will
include the impact of link bandwidth into our credit evaluation
process.
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