
IEEE Communications Magazine • July 201336 0163-6804/13/$25.00 © 2013 IEEE

INTRODUCTION: WHAT IS
SOFTWARE-DEFINED NETWORKING?

Network configuration and installation requires
highly skilled personnel adept at configuration of
many network elements. Where interactions
between network nodes (switches, routers, etc.)
are complex, a more systems-based approach
encompassing elements of simulation is required.
With the current programming interfaces on
much of today’s networking equipment, this is
difficult to achieve.

In addition, operational costs involved in pro-
visioning and managing large multivendor net-
works covering multiple technologies have been
increasing over recent years, while the predomi-
nant trend in revenue for operations has been
decreasing. Coupled with increasing scarcity of

human resources and increasing costs of real
estate, this “perfect storm” for service providers
is leading to renewed interest in solutions that
can unify network management and provisioning
across multiple domains. A new network model
is required to support this.

The term software-defined networking (SDN)
has been coined in recent years. However, the
concept behind SDN has been evolving since
1996, driven by the desire to provide user-con-
trolled management of forwarding in network
nodes. Implementations by research and industry
groups include Ipsilon (proposed General Switch
Management protocol, 1996), The Tempest (a
framework for safe, resource-assured, pro-
grammable networks, 1998) and Internet Engi-
neering Task Force (IETF) Forwarding and
Control Element Separation, 2000, and Path
Computation Element, 2004. Most recently,
Ethane (2007) and OpenFlow (2008) have
brought the implementation of SDN closer to
reality. Ethane is a security management archi-
tecture combining simple flow-based switches
with a central controller managing admittance
and routing of flows. OpenFlow enables entries
in the Flow Table to be defined by a server
external to the switch. SDN is not, however, lim-
ited to any one of these implementations, but is
a general term for the platform.

For clarity, SDN is described in this article
with the Open Networking Foundation (ONF)
[1] definition: “In the SDN architecture, the con-
trol and data planes are decoupled, network intelli-
gence and state are logically centralized, and the
underlying network infrastructure is abstracted
from the applications.”

SDN focuses on four key features:
• Separation of the control plane from the

data plane
• A centralized controller and view of the

network
• Open interfaces between the devices in the

control plane (controllers) and those in the
data plane

ABSTRACT

Cloud services are exploding, and organiza-
tions are converging their data centers in order
to take advantage of the predictability, continu-
ity, and quality of service delivered by virtualiza-
tion technologies. In parallel, energy-efficient
and high-security networking is of increasing
importance. Network operators, and service and
product providers require a new network solu-
tion to efficiently tackle the increasing demands
of this changing network landscape. Software-
defined networking has emerged as an efficient
network technology capable of supporting the
dynamic nature of future network functions and
intelligent applications while lowering operating
costs through simplified hardware, software, and
management. In this article, the question of how
to achieve a successful carrier grade network
with software-defined networking is raised. Spe-
cific focus is placed on the challenges of network
performance, scalability, security, and interoper-
ability with the proposal of potential solution
directions.

FUTURE CARRIER NETWORKS

Sakir Sezer, Sandra Scott-Hayward, and Pushpinder Kaur Chouhan, CSIT, Queen’s University Belfast

Barbara Fraser and David Lake, Cisco Systems

Jim Finnegan and Niel Viljoen, Netronome

Marc Miller and Navneet Rao, Tabula

Are We Ready for SDN?
Implementation Challenges for
Software-Defined Networks

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 36

sandra
高亮
推翻

sandra
高亮
可預測性

sandra
高亮
資料中心是雲端服務的推動和組織，以便採取可預測性、連續性、優良的服務受到虛擬化技術的優勢。

sandra
高亮
用具

sandra
高亮
景色

sandra
高亮
同時，高效能和高安全性是網路越來越最重視。網路提供者需要一種新的方案來解決不斷變化的網路景色。

sandra
高亮
出現

sandra
高亮
有能力的

sandra
高亮
SDN 的出現，成為一個支持有效率的網路技術並且聰明應用動態性質，同時降低軟硬體成本。

sandra
高亮
運送人

sandra
高亮
等級

sandra
文字方塊
Q1. Carrier Grade Network Address Translation (CGN) ?

sandra
底線

sandra
高亮
互用性

sandra
高亮
在這篇 paper ，如何實現一個成功的 CGN ，直到 SDN 問題被提出。主要特點放在網路性能、可擴展性、安全性、互用性的解決方向挑戰。

sandra
高亮
互動

sandra
高亮
網路管理者負責網路配置和安裝。其中，在這些網路設備節點中之間的互相設定是複雜的

sandra
高亮
複雜的

sandra
高亮
多廠商

sandra
高亮
主要的

sandra
高亮
收入

sandra
高亮
減少的

sandra
高亮
因此，許多大廠商維護配置操作和管理覆蓋多種網路技術下營運成本一直不斷增加，在這幾年中，主要收入操作趨勢逐漸下降。

sandra
高亮
缺乏

sandra
高亮
人的

sandra
高亮
身分

sandra
高亮
主要的

sandra
高亮
重新的

sandra
高亮
關注

sandra
高亮
再加上缺乏人的資源和增加成本真實身分，這種稱為完美暴動 (storm)，服務提供主要重新關注解決可能利用網路管理和供應多個誇網域。

sandra
高亮
進化的

sandra
刪除線
2008

sandra
高亮
要求

sandra
高亮
在這幾年中 SDN 已被鑄造。雖然，SDN 概念從2008至今，使用 OpenFlow Controller 轉發在網路節點。

sandra
刪除線

sandra
高亮
進入

sandra
高亮
外部的

sandra
高亮
Ethane 一種安全的管理架構結合簡單基於流交換器和一個中央控制管理流量的路由。OpenFlow Switch 中 Flow table 以及透過傳送控制訊號的 OpenFlow procotol 來定義。

sandra
高亮
建立

sandra
高亮
減低

sandra
高亮
控制層從資料層分離

sandra
高亮
集中控制網路

sandra
高亮
在控制層中裝置 (OpenFlow Controller) 和資料層之間

IEEE Communications Magazine • July 2013 37

• Programmability of the network by external
applications

Our vision of the future SDN architecture is
described in Fig. 1. This architecture encompass-
es the complete network platform.

The bottom tier of Fig. 1 involves the physical
network equipment including Ethernet switches
and routers. This forms the data plane.

The central tier consists of the controllers
that facilitate setting up and tearing down flows
and paths in the network. The controllers use
information about capacity and demand obtained
from the networking equipment through which
the traffic flows. The central tier links with the
bottom tier via an application programming
interface (API) referred to as the southbound
API. Connections between controllers operate
with east and westbound APIs. The controller-
application interface is referred to as the north-
bound API.

Functional applications such as energy-effi-
cient networking, security monitoring, and access
control for operation and management of the
network are represented at the top of Fig. 1
highlighting the user control/management sepa-
ration from the data plane. An application in
this article refers to a service provided by the
network operator. Detailed insight into every
element of the architecture in Fig. 1 is beyond
the scope of this article. Instead, the transition
from the traditional network to the state of the
art in SDN today is presented.

A key challenge in SDN relates to separation
of the control and data planes, and maintaining
carrier grade service within this framework. The
architecture requirements to meet operational
expectations in carrier grade networks are scala-
bility, reliability, quality of service (QoS), and
service management [2]. Four specific questions

arising from the control-data plane separation
challenge are discussed later in this article. A
series of solutions to these identified issues are
then studied, and the article concludes with the
outline of our vision for the future of SDN.

BACKGROUND: WHY SDN?
The fundamental purpose of the communication
network is to transfer information from one
point to another. Within the network the data
travels across multiple nodes, and efficient and
effective data transfer (forwarding) is supported
by the control provided by network applica-
tions/services.

NETWORKING THE OLD WAY
In traditional networks, as shown in Fig. 2, the
control and data planes are combined in a net-
work node.

The control plane is responsible for configu-
ration of the node and programming the paths
to be used for data flows. Once these paths have
been determined, they are pushed down to the
data plane. Data forwarding at the hardware
level is based on this control information.

In this traditional approach, once the flow
management (forwarding policy) has been defined,
the only way to make an adjustment to the policy
is via changes to the configuration of the devices.
This has proven restrictive for network operators
who are keen to scale their networks in response
to changing traffic demands, increasing use of
mobile devices, and the impact of “big data.”

NETWORKING THE SDN WAY
From these service-focused requirements, SDN
has emerged. Control is moved out of the indi-
vidual network nodes and into the separate, cen-

Figure 1. SDN functional architecture illustrating the infrastructure, control, and application elements of
which the network is comprised.

In
fr

as
tr

uc
tu

re

Controller

Westbound

Northbound API (e.g., FML, Procera, Frenetic, RESTful)

Southbound API (e.g., OpenFlow, ForCES, PCEP, NetConf, IRS)

(ALTO,
Hyperflow,
etc.)

C
on

tr
ol

le
r

ONIX

Router Switch Virtual switch Wireless access point

Network node

Application

POX
Maestro

......

ControllerController

ONIX

POX
Maestro

......

A
pp

lic
at

io
n

Energy-efficient
networking

Traffic/security
monitoring

Mobility
management

Access
control

Eastbound

(ALTO,
Hyperflow,
etc.)

From these service-

focussed require-

ments, SDN has

emerged. Control is

moved out of the

individual network

nodes and into the

separate, centralized

controller. SDN

switches are con-

trolled by a Network

Operating System

(NOS) that collects

information.

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 37

sandra
高亮
在 Application 的程式是可編譯的

sandra
高亮
我們對未來 SDN 架構描述如圖1所示，這個架構包括完整網路平台

sandra
高亮
由圖1所示，底下為實體層網路設備，包括路由器、交換器，統一稱為資料層

sandra
高亮
在中間部分由 OpenFlow Controller 來控制網路整個流量開如何通過。

sandra
高亮
是經由應用層編譯而成的

sandra
文字方塊
Q2. 在中間 Controller 為何要有這們多的分向?(東邊、西邊)

sandra
高亮
監控

sandra
高亮
功能應用如有效能力網路、安全監控、操作訪問控制和網路管理再如圖1的上面。

sandra
高亮
主要的

sandra
高亮
通訊網路主要的目標是從一個點傳送到另一個。跨多個節點，有高效能的資料傳輸數據網路是由提供應用/服務控制網路支持。

sandra
文字方塊
Why SDN?
讓網路管理變得更集中，而且具有可程式化的機制，對電信網路業者或企業的資料中心網路服務來說，可以藉此獲得自動處理與動態因應變化的好處，這樣一來，可節省支出，不需經常購買專用架構網路設備，並且日常維運時，SDN的網路部署能支援隨成長規模大小來付費的模式，杜絕過度提供資源。

sandra
高亮
如圖2所示，在傳統網路中，控制層和資料層被組合在一個網路節點。

sandra
高亮
決定

sandra
高亮
控制層是負責節點配置和將可使用資料流編譯成路徑。一旦這些路徑都被決定，就會被推向資料層，再由硬體等級資料轉發是基於控制資訊。

sandra
高亮
傳統的作法，一旦流管理已決定，唯一辦法進行調整的政策是通過改變設備的配置。這已被證明網路操作人要不斷變化流量需求，越來越多的使用移動設備，而影響大資料。

sandra
高亮
分隔

sandra
高亮
SDN 的出現，從這些服務重點需求，控制層被移出個別網路節點和進入分隔與集中 OpenFlow Controller。

sandra
文字方塊
在SDN網路下，目前OpenFlow Controller 與 OpenFlow Switch 之間溝通最常使用的協定是OpenFlow，或者透過應用程式介面（Application Programmatic Interfaces，API）來進行，通常這樣的應用程式介面，我們稱之為南向（Southbound）API，也就是上述SDN的可程式化機制。

sandra
底線

IEEE Communications Magazine • July 201338

tralized controller. SDN switches are controlled
by a network operating system (NOS) that col-
lects information using the API shown in Fig. 2a
and manipulates their forwarding plane, provid-
ing an abstract model of the network topology to
the SDN controller hosting the applications.

The controller can therefore exploit complete
knowledge of the network to optimize flow man-
agement and support service-user requirements
of scalability and flexibility. For example, band-
width can be dynamically allocated into the data
plane from the application.

In Fig. 3, once the first packet of a new flow
arrives at the switch from the sender (step 1), the
switch checks for a flow rule for this packet in
the SDN cache (step 2). If a matching entry is
found, the instructions associated with the specif-
ic flow entry are executed (e.g., update counter,
packet/match fields, action set, metadata). Pack-
ets are then forwarded to the receiver (step 5).

If no match is found in the flow table, the
packet may be forwarded to the controller over
a secure channel (step 3). Using the southbound
API (e.g., OpenFlow, ForCES, PCEP), the con-
troller can add, update, and delete flow entries,
both reactively (in response to packets) and
proactively. The controller executes the routing
algorithm, and adds a new forwarding entry to
the flow table in the switch and to each of the
relevant switches along the flow path (step 4).
The switch then forwards the packet to the
appropriate port to send the packet to the receiv-
er (step 5).

WHERE DOES SDN TAKE US?
SDN implementation opens up a means for new
innovation and new applications. Dynamic topol-
ogy control (i.e., adjusting switch usage depend-
ing on load and traffic mapping) becomes
possible with the global network view. This
introduces scope for network-wide access con-
trol, power management, and home networking,
for which the network view is not beneficial but
absolutely necessary.

Furthermore, the network programmability
possible in SDN allows seamless communication
at all levels, from hardware to software and ulti-
mately to end users (network operators). Pro-
grammability makes applications aware of the
network and the network aware of applications.
This enables greatly improved use of resources
and opens up the potential for new applications
with the associated potential for revenue genera-
tion (e.g., flow metering) in which cost plans can
be defined based on a level of service provision.

KEY CHALLENGES
SDN holds great promise in terms of simplifying
network deployment and operation along with
lowering the total cost of managing enterprise
and carrier networks by providing programmable
network services. However, a number of chal-
lenges remain to be addressed. This section
focuses on four specific questions arising from
the challenges of SDN.

PERFORMANCE VS. FLEXIBILITY: HOW CAN THE
PROGRAMMABLE SWITCH BE ACHIEVED?

One fundamental challenge of SDN is how to
handle high-touch high-security high-perfor-
mance packet processing flows in an efficient
manner. There are two elements to consider:
performance and programmability/flexibility.

In this section, performance refers specifically
to the processing speed of the network node
considering both throughput and latency. Pro-
grammability means the capability to change
and/or accept a new set of instructions in order
to alter functional behavior. Flexibility is the
ability to adapt systems to support new unfore-
seen features (e.g., applications, protocols, secu-
rity measures).

There are a number of initiatives [3, 4] under-
way to allow programmability of existing net-
work technologies in a manner conformant with
the goals of SDN. Beyond these, the SDN pro-

Figure 2. Traditional network view compared with SDN network view: a) traditional approach (each net-
work node has its own control and management plane); b) SDN approach (the control plane is extracted
from the network node).

API

API

Applications

Data plane
Link, switching,
forwarding, routing

(b)(a)

SDN stackOSOS

Network node

Control plane

Network topology ACLs,
forwarding and routing
QoS, link management

Applications

Control plane

Network topology ACLs,
forwarding and routing
QoS, link management

Application
programming
interface (API)

API

Data plane
Link, switching,
forwarding, routing

Network node

SDN holds great

promise in terms of

simplifying network

deployment and

operation along with

lowering the total

cost of managing

enterprise and carrier

networks by provid-

ing programmable

network services.

However, a number

of challenges remain

to be addressed.

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 38

sandra
高亮
操作

sandra
高亮
抽象的

sandra
高亮
SDN 交換器是透過 OpenFlow Controller 網路操作系統所收集資訊使用 API ， 如圖2所示。提供網路拓樸抽象模型，以在 OpenFlow Controller 主機應用程式。

sandra
高亮
利用

sandra
高亮
全部的

sandra
高亮
因此，OpenFlow Controller 可能利用全部網路訊息來優化可擴展性和靈活性的流量管理和支持服務使用需求。例如:頻寬可以被動態分配從英用程序進入資料層。

sandra
高亮
如圖3所示，1. 從 Sender (發送方) 發送第一個分包到達 OpenFlow Switch 時 2. OpenFlow Switch 檢查該封包資料是否在規則中，5. 如果找到這項規則，則轉發至接收端。

sandra
高亮
3. 如果沒有比對成功，則封包將轉送至 OpenFlow Controller 透過安全通道。使用南向 API ，該 OpenFlow Controller 增加、刪除、兩者無論是主動還是被動。

sandra
高亮
被動

sandra
高亮
主動

sandra
高亮
有關的

sandra
高亮
OpenFlow Controller 執行路由演算法來增加新的 rule 至 OpenFlow Switch flow table 中和每個沿著 OpenFlow Switch 流量路徑，然後將封包轉送至接收端。

IEEE Communications Magazine • July 2013 39

grammability and performance problem remains
a challenge to achieve node bandwidth beyond
100 Gb/s.

Figure 4 outlines the main technologies used
for network processing in terms of their relation-
ship (trade-off) between programmability/flexi-
bility and performance.

General-purpose processors (CPUs/GPPs)
provide the highest flexibility. High-level pro-
gramming languages and design tools enable the
highest design abstraction and the rapid devel-
opment of complex packet processing functions.
The limitation of CPU implementation, howev-
er, is its performance and power dissipation,
constrained by the general-purpose architecture.
Nevertheless, multicore processors such as those
of the Intel Xeon family [5] can achieve several
tens of gigabits of throughput by load balancing
traffic onto multiple cores.

Network flow processors (NPUs/NFPs) are
optimized processor architectures for network
processing. Instructions and interconnects are
tailored for processing packetized data. Dedicat-
ed hardware accelerators and various interface
technologies are used for acceleration while
reducing power dissipation. However, the flexi-
bility of implementation is reduced as more
detailed knowledge of the device is required in
order to define the packet/flow processing func-
tion and take full advantage of the device’s par-
allel processing capabilities. State-of-the-art
NPUs (e.g., Netronome [6]) promise flow pro-
cessing performance of over 200 Gb/s line rate
per device and well over 100 Mpackets/s.

Programmable logic devices (PLDs) or field
programmable gate arrays (FPGAs) have
evolved into a technology for telecommunication
and network processing. In comparison to micro-
processors, PLDs are configured using hardware
design tools. This technology is ideal for imple-
menting highly parallel and pipelined data paths

that are tailored for individual network process-
ing functions. PLD technologies (e.g., Tabula
[7]) can achieve custom data path processing of
over 200 Gb/s per device (e.g., 200 Mpackets/s
switching).

Application-specific standard products
(ASSPs) are the cornerstone of high-perfor-
mance networks. They are designed and opti-
mized for widely used functions or products
aiming for high volume. The drawback of ASSPs
is their limited flexibility. Core ASSP domains
are physical and data link layer products, switch-
ing, and wireless products. In recent years, SDN-
specific ASSPs have been introduced by Intel,
Broadcom, and Marvell targeting primarily high-
performance Ethernet switching with virtualiza-
tion and OpenFlow support for over 500 Gb/s
switching.

Application-specific integrated circuits
(ASICs) are proprietary devices custom-built by
system vendors (e.g., Cisco, Huawei, Juniper)
when standard products are unavailable and pro-
grammable solutions are unable to meet perfor-
mance constraints. As an application-specific
solution, ASICs offer the lowest flexibility while
providing the highest performance, power, and
cost benefits. SDN products are expected to
comprise proprietary ASICs to implement the
SDN data plane.

Taking into account the programmability/per-
formance trade-off of data processing technolo-
gies, it is evident that only a hybrid approach will
provide an effective technology solution for
SDN. Main SDN node functions can be decom-
posed into clusters of subfunctions such that fea-
ture-specific technologies (within or across
nodes) are used to satisfy the best performance
vs. programmability trade-off in terms of power
dissipation, cost, and scalability.

For example, building a platform based on
custom-built devices (e.g., PLDs/ASSPs) com-

Figure 3. The operation of SDN (controller-switch).

Flow updates
+ stats

HW abstraction API

Packet +
metadata

Secure
channel Flow

table

Table manager

Hardware driver

Packet processing tables

Packet switching/forwarding

PortsSDN switch

Flow
table

Group
table

Controller

Step 3 Step 4

Step 5Step 1

Receiver

Sender

ID

10

Source

192.168.1

Dest

192.168.2

......

......
ID

10

Source

192.168.1

Dest

192.168.2

......

......

Control

Data

Step 2

Route management
Network visibility
Network provisioning
Network virtualization
Orchestrates network overlays

HW API

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 39

IEEE Communications Magazine • July 201340

bined with NPUs/NFPs and a CPU/GPP pre-
sents a hybrid programmable architecture. Such
a platform can support fast forwarding on estab-
lished flows in the network along with pro-
grammability and controlled processing for
encapsulated traffic and new flows.

One goal of SDN is to develop networks built
on general-purpose hardware. The combination
of technologies as described in the hybrid archi-
tecture supports this goal. With a programmable
interface built on standard hardware, a multiven-
dor equipped network becomes a possibility.

SCALABILITY: HOW CAN THE CONTROLLER
BE ENABLED TO PROVIDE A
GLOBAL NETWORK VIEW?

Assuming that the performance requirements
can be achieved within the hybrid programmable
architecture, a further issue that has seen some
discussion but limited solution is scalability in
SDN.

The issue can loosely be split into controller
scalability and network node scalability. The
focus here is on controller scalability in which
three specific challenges are identified. The first
is the latency introduced by exchanging network
information between multiple nodes and a single
controller. The second is how SDN controllers
communicate with other controllers using the
east and westbound APIs. The third challenge is
the size and operation of the controller back-end
database.

Considering the first issue, a distributed or
peer-to-peer controller infrastructure would share
the communication burden of the controller.
However, this approach does not eliminate the
second challenge of controller-to-controller inter-
actions, for which an overall network view is
required.

Traditional packet networks lend themselves
to scalable solutions because they do not require
extensive state to be held between system units.
Each network node is autonomous, requiring
only limited knowledge of its neighbors. Routing
protocols have been designed to control traffic
with this in mind. In order to create resilient
networks, alternative paths and secondary equip-
ment are required. It may then be necessary to

hold some state between systems to ensure that
should a failure occur, there is little or no inter-
ruption in service. Typical systems that require
this functionality include network elements such
as load balancers and firewalls.

Within a pure SDN environment, a single
controller or group of controllers would provide
control plane services for a wider number of
data forwarding nodes, thus allowing a system-
wide view of network resources.

Other approaches that match the goals of
SDN with existing routing protocols involve
addition of an orchestration layer exposing an
API that application elements may use to request
desired performance from the transport layer.

An extension to the application layer traffic
optimization (ALTO) data model has been pro-
posed by various organizations in which the
ALTO server hosts aggregated information to
which each controller has a link. The goal of
ALTO is to guide applications in their selection
of one of several hosts capable of providing the
desired resource. A vertical architecture with
bidirectional information flow between each
SDN controller and the ALTO server is pro-
posed in [8] to support the global network view.
In terms of improving application performance,
ALTO with SDN would be a powerful tool.

A specific solution to controller scalability is
HyperFlow [9]. HyperFlow is a controller appli-
cation that sits on the NOX controller and works
with an event propagation system. The Hyper-
Flow application selectively publishes events that
change the state of the system, and other con-
trollers replay all the published events to recon-
struct the state. By this means all the controllers
share the same consistent network-wide view.

Indeed, this concept of providing the network
view by distributing the state over multiple con-
trollers is highlighted in [10], in which a series of
solutions to controller scalability are described.
Onix [11] is a distributed control platform pro-
viding abstractions for partitioning and distribut-
ing network state onto multiple distributed
controllers. Notably, in [10], the authors con-
clude that the flexibility of SDN provides an
opportunity in terms of network manageability
and functional scalability.

On the way to achieving full scalability for
SDN, an evolutionary approach to network pro-
grammability will be necessary. For example,
with the hybrid architecture a volume of queries
can be resolved in the node CPU, which would
otherwise be transferred to the controller for
processing. This can potentially reduce the
database size at the controller and simultaneous-
ly reduce communication between the controller
and its nodes.

SECURITY: HOW CAN THE SOFTWARE-DEFINED
NETWORK BE PROTECTED FROM

MALICIOUS ATTACK?

There has been limited industry and research
community discussion to date on the security
issues associated with SDN. A greater focus on
security is therefore required if SDN is going to
be acceptable in broader deployment. Indeed, a
security working group has been set up within
Open Networking Foundation (ONF) with this

Figure 4. Network processing: performance vs. programmability.

Multicore CPU/GPP

NPU/NFP

PLD/FPGA

ASSP

Processing performance (Gb/s)
1000

Pr
og

ra
m

m
ab

ili
ty

10010

Custom ASIC

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 40

IEEE Communications Magazine • July 2013 41

in mind. A number of issues are highlighted here
that underscore the need for further study and
development of security solutions.

Potential security vulnerabilities exist across
the SDN platform. At the controller-application
level, questions have been raised around authen-
tication and authorization mechanisms to enable
multiple organizations to access network
resources while providing the appropriate pro-
tection of these resources [12]. Not all applica-
tions require the same network privileges, and a
security model must be put in place to isolate
applications and support network protection.

One potential solution is role-based autho-
rization. FortNox [13] is proposed to resolve the
situation when a controller receives conflicting
flow rules from two different applications. Role-
based authorization alone, however, does not
present a solution for the complexity of SDN
requiring isolation of applications or resources.

The controllers are a particularly attractive
target for attack in the SDN architecture open
to unauthorized access and exploitation. Fur-
thermore, in the absence of a robust, secure con-
troller platform, it is possible for an attacker to
masquerade as a controller and carry out mali-
cious activities. In the past, such attacks have
targeted DNS servers (e.g., the Kaminsky DNS
attack [14]). Considerably greater damage could
be done by such an attack on an SDN controller.

A security technology such as transport layer
security (TLS) with mutual authentication
between the controllers and their switches can
mitigate these threats. Current specifications of
OpenFlow [1] describe the use of TLS. However,
the security feature is optional, and the standard
of TLS is not specified. A full security specifica-
tion for the controller-switch interface must be
defined to secure the connection and protect
data transmitted across it.

With a single controller controlling a set of
network nodes, implementation of authentica-
tion with TLS may provide the necessary securi-
ty. However, with multiple controllers
communicating with a single node or multiple
control processes communicating with a single
centralized controller, authorization and access
control becomes more complex. The potential
for unauthorized access increases, and could
lead to manipulation of the node configuration
and/or traffic through the node for malicious
intent.

One potential malicious attack is the denial
of service (DoS) attack. Within the operation of
SDN, as illustrated in Fig. 3, there are two
options for the handling of a new flow when no
flow match exists in the flow table. Either the
complete packet or a portion of the packet head-
er is transmitted to the controller to resolve the
query. With a large volume of network traffic,
sending the complete packet to the controller
would absorb high bandwidth.

However, if only header information is trans-
mitted to the controller, the packet itself must
be stored in node memory until the flow table
entry is returned. In this case, it would be easy
for an attacker to execute a DoS attack on the
node by setting up a number of new and
unknown flows. As the memory element of the
node can be a bottleneck due to high cost, an

attacker could potentially overload the switch
memory.

Furthermore, with the introduction in SDN
of open interfaces and known protocols to sim-
plify network programming by any application
provider, the door is thrown open to attackers.
With full knowledge of how to control the net-
work, with access to the controller, the operation
of the network can quickly and easily be subvert-
ed to the benefit of the attacker. Even at a lower
level, individual network nodes, hosts, or users
could be targeted, undermining the desired net-
work performance. Such issues must receive due
consideration in the SDN platform design.

On the plus side, the SDN architecture sup-
ports a highly reactive security monitoring, anal-
ysis, and response system. From the security
perspective SDN can support:
• Network forensics: facilitate quick and

straightforward, adaptive threat identifica-
tion and management through a cycle of
harvesting intelligence from the network,
analyzing it, updating policy, and then
reprogramming to optimize from network
experience

• Security policy alteration: allow you to
define a security policy and have it pushed
out to all the infrastructure elements, reduc-
ing the frequency of misconfiguration and
conflicting policies across the infrastructure

• Security service insertion: facilitate security
service insertion where applications like
firewalls and intrusion detection systems
(IDSs) can be applied to specified traffic
according to the organization’s policies
However, the security of SDN will only be as

good as the defined security policy. Implementa-
tion of existing authentication and authorization
mechanisms can resolve some aspects of the
security challenge. Meanwhile, threat detection
and protection techniques will continue to
evolve. The key, though, is for individual organi-
zations to effectively and comprehensively define
their security policies in order to exploit the full
extent of available network protection.

INTEROPERABILITY: HOW CAN SDN SOLUTIONS
BE INTEGRATED INTO EXISTING NETWORKS?

To answer this question requires consideration
of interoperability and standardization to sup-
port the transition from the traditional network
model to SDN.

It would be straightforward to deploy a com-
pletely new infrastructure based on SDN tech-
nology. For this, all elements and devices in the
network would be SDN-enabled. However, there
is a vast installed base of networks supporting
vital systems and businesses today. To simply
“swap out” these networks for new infrastructure
is not going to be possible, and is only well suit-
ed for closed environments such as data centers
and campus networks.

The transition to SDN therefore requires
simultaneous support of SDN and legacy equip-
ment. The IETF path computation element
(PCE) [15] could help in gradual or partial
migration to SDN. With PCE, the path compu-
tation component of the network is moved from
the networking node to a centralized role, while

Threat detection and

protection tech-

niques will continue

to evolve. The key,

though, is for indi-

vidual organizations

to effectively and

comprehensively

define their security

policies in order to

exploit the full extent

of available network

protection.

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 41

IEEE Communications Magazine • July 201342

traditional network nodes not using PCE contin-
ue to use their existing path computation func-
tion. A specific protocol (PCEP) enables
communication between the network elements.
However, PCE does not provide complete SDN.
The centralized SDN controller supports com-
plete path computation for the flow across multi-
ple network nodes.

Further development is required to achieve
a hybrid SDN infrastructure in which tradi-
t ional , SDN-enabled, and hybrid network
nodes can operate in harmony. Such interop-
erability requires the support of an appropri-
ate protocol that both introduces the
requirements for SDN communication inter-
faces and provides backward compatibility
with existing IP routing and multiprotocol
label switching (MPLS) control plane tech-
nologies. Such a solution would reduce the
cost, risk, and disruption for enterprise and
carrier networks transitioning to SDN.

Introducing a new protocol requires consid-
eration of standardization and where this stan-
dardization will be of most benefit . The
European Telecommunications Standards Insti-
tute (ETSI) Network Function Virtualisation
(NFV) Industry Specification Group [4] intends
to standardize components within the core net-
work that may be virtualized to provide effi-
cient scalabil ity and placement of those
services. IETF’s Forwarding and Control Ele-
ment Separation (ForCES) Working Group
has been working on standardizing interfaces,
mechanisms, and protocols with the goal of
separating the control plane from the forward-
ing plane of IP routers. ONF is standardizing
OpenFlow as a communication protocol within
the network and is driving the standards of
related protocols, such as the OpenFlow man-
agement and configuration protocol. Many
programming languages such as Frenetic and
Procera are also being proposed to resolve the
northbound API link.

The work of the IETF, ETSI, ONF, and other
industry working groups must be coordinated in
order to take advantage of existing standards in
networking while proposing and developing the
most effective standards to support migration
from the traditional network model to SDN.

CONCLUSION
SDN has emerged as a means to improve pro-
grammability within the network to support the
dynamic nature of future network functions. As
bandwidth demand escalates, the provision of
additional capabilities and processing power with
support for multiple 100GE channels will be
seamless through an SDN-based update and/or
upgrade. SDN promises flexibility, centralized
control, and open interfaces between nodes,
enabling an efficient, adaptive network.

In order to achieve this goal, a number of
outstanding challenges must be resolved. In this
article we have presented a discussion of a num-
ber of challenges in the area of performance,
scalability, security, and interoperability. Existing
research and industry solutions could resolve
some of these problems, and a number of work-
ing groups are also discussing potential solu-

tions. In addition to these, the hybrid pro-
grammable architecture could be a means to
counter performance and scalability issues intro-
duced by SDN. The objective of the model is to
optimize flow processing in the network.

The original data networks were formed out
of a combination of computing devices with data
and network nodes to transfer this data between
the source and destination. The ability to pro-
vide “X”-as-a-service (XaaS) through virtualiza-
tion technology has increased the volume of data
in the network. This has set a baseline for a new
communication method by pushing computation
into the network devices, increasing machine-to-
machine communications.

The future of networks will be shaped around
this progression. The goal is to provide effective
communications and services where network,
data, and computation are fused into a service
architecture. In the future, for a specific process,
data will request the computing, storage, and
connection it requires before launching the
application. The location of the network ele-
ments might be distributed physically and virtu-
ally, but this will be entirely opaque to the end
user. All the user will observe is the quality of
delivery of the requested service.

SDN will contribute to this vision of future
communications. However, significant issues
must be addressed in order to meet expecta-
tions. Indeed, consideration of the potential for
application-driven networks might lead us to
wonder whether SDN as currently envisioned is
even sufficient. Nevertheless, it is certain that
SDN is here to stay as an evolutionary step,
paving the way toward a highly optimized ubiq-
uitous service architecture.

REFERENCES
[1] ONF, “Software-Defined Networking: The New Norm for

Networks,” white paper, https://www.opennetworking.org
[2] ITU.T Rec. Y.1731, “OAM Functions and Mechanisms for

Ethernet Based Networks,” http://www.itu.int/itudoc/itu-t.
[3] “Interface to the Routing System,” IRTF Working Group,

available: https://datatracker.ietf.org/wg/irs/charter/.
[4] ETSI Industry Spec. Group, “Network Function Virtuali-

sation,” http://portal.etsi.org/portal/server.pt/communi-
ty/NFV/367.

[5] R. Ozdag, “Intel Ethernet Switch FM6000 Series — Soft-
ware Defined Networking,” http://www.intel.co.uk/con-
tent/dam/www/public/us/en/documents/white-papers/et
hernet-switch-fm6000-sdn-paper.pdf.

[6] “Netronome NFP6XXX Flow Processor,” http://netronome.
com/pages/flow-processors/.

[7] Tabula, www.tabula.com.
[8] IETF ALTO WG, “Use Cases for ALTO with Software

Defined Networks,” http://tools.ietf.org/pdf/draft-xie-
alto-sdn-use-cases-01.pdf.

[9] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Dis-
tributed Control Plane for Open-Flow, ” Proc. 2010
Internet Network Management Conf. Research on
Enterprise Networking, 2010.

[10] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On Scal-
ability of Software-Defined Networking,” IEEE Commun.
Mag., vol. 51, no. 2, Feb. 2013, pp. 136–41.

[11] T. Koponen et al., “Onix: A Distributed Control Platform
for Large-Scale Production Networks,” OSDI, 2010.

[12] IETF Network WG, “Security Requirements in the Soft-
ware Defined Networking Model,” Internet draft,
https://datatracker.ietf.org/doc/draft-hartman-sdnsec-
requirements/.

[13] P. Porras et al., “A Security Enforcement Kernel for
OpenFlow Networks,” Proc. 1st Wksp. Hot Topics in
Software Defined Networks, 2012, pp. 121–26.

[14] “Kaminsky DNS Attack,” http://dankaminsky.com.
[15] IETF WG, “Path Computation Element,” http://data-

tracker.ietf.org/wg/pce/charter/.

Consideration of the

potential for applica-

tion-driven networks

might lead us to

wonder whether

SDN as currently

envisioned is even

sufficient. Neverthe-

less, it is certain that

SDN is here to stay

as an evolutionary

step, paving the way

for a highly opti-

mized ubiquitous

service architecture.

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 42

IEEE Communications Magazine • July 2013 43

BIOGRAPHIES
SAKIR SEZER is director and head of network and cyber secu-
rity research at CSIT and holds the Chair for Secure Infor-
mation Technologies at Queen’s University Belfast. His
research is leading major (patented) advances in the field
of high-performance traffic processing, and he has co-
authored over 140 conference and journal papers in the
areas of network security, content processing, malware
detection, and system on chip.

SANDRA SCOTT-HAYWARD (s.scott-hayward@qub.ac.uk) is a
research fellow in the Network Security research cluster at
CSIT, Queen’s University Belfast. She has experience in both
research and industry, having worked for a number of
years as engineer and project manager at Airbus and hav-
ing completed her Ph.D. at Queen’s University Belfast. Her
current focus is research and development of network
security architectures and protocols for software-defined
networks.

PUSHPINDER KAUR CHOUHAN (p.chouhan@qub.ac.uk) is a
research fellow in the Network Security research cluster at
CSIT. She received her Ph.D. degree in computer science
from ENS-Lyon, France, in 2006. Her research interests are
in grid computing, cloud computing, virtualization, and
software-defined networks in networking technologies. Her
current focus is research and development of advanced
security architectures for cloud computing.

BARBARA FRASER is director of innovation at Cisco Systems.
She has 20 years of experience in the area of Internet secu-
rity. She has been active in the IETF since 1989. She is a
recognized expert in Internet security, having served on a
National Research Council study panel that published
“Toward a Safer and More Secure Cyberspace” in 2007, as
a delegate to G-8 cybercrime workshops, and as an invited
speaker at many events.

DAVID LAKE, B.Sc., is a consulting engineer in the R&D
Group at Cisco. He has more than 20 years of network
design and deployment experience, ranging from X.25 and
SNA, through the era of multiprotocol routing to IP. He
has extensive experience in transporting rich-media tech-

nologies across complex enterprise and service provider
networks. He is an editor of and contributor to the Man-
agement and Orchestration (MANO) Working Group with
ETSI’s Network Function Virtualisation group.

JIM FINNEGAN is senior vice president of silicon engineering
at Netronome. He has over 30 years’ experience in the net-
works and communications business. His career has includ-
ed senior positions at Intel, Basis Communications,
Miles-33, Digital Equipment Corporation, Tellabs, and Racal
Data Group. At Intel, he became general manager of both
the Network Processor Division and the Communication
Infrastructure Group’s Technology Office. He has Bachelor’s
and Master’s degrees in electronic engineering from
Queen’s University Belfast.

NIEL VILJOEN is the chief development officer and founder of
Netronome. He has been active in the computing and net-
working equipment industry for the past 25 years. Primary
areas of focus include IP, ATM, security, and system design.
He has held senior positions at Marconi Group, FORE Sys-
tems, and Nemesys Ltd., and received a number of industry
awards. He attended the University of Stellenbosch, South
Africa, and Cambridge University, United Kingdom.

MARC MILLER is Tabula’s senior director of marketing, lead-
ing new product definition, building IP partnerships, and
creating new business models centered on high-end net-
working. At Altera he led Stratix product definition and
drove SerDes hard IP acquisition, providing the cornerstone
for multiple generations. At LSI Logic he led the team that
implemented the first Gigabit CMOS SerDes and ran the
Computer Strategic Business Unit. He started his career in
microprocessor design at Digital.

NAVNEET RAO is a senior staff engineer at Tabula, architect-
ing high-bandwidth 100G Ethernet 14 switching, network
security and SDN solutions. Previously at Xilinx, he led
teams designing high-performance networking systems
and developing IP for serial protocols. He also architected
transceivers and switch fabric ASICs at Mindspeed Tech-
nologies, and has led ASIC development teams at Philips
Semiconductors and LSI Logic. He earned his degree from
the Indian Institute of Technology, Kharagpur.

SCOTT-HAYWARD LAYOUT_Layout 1 6/26/13 11:51 AM Page 43

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

