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INTRODUCTION: WHAT IS
SOFTWARE-DEFINED NETWORKING?

Network configuration and installation requires
highly skilled personnel adept at configuration of
many network elements. Where interactions
between network nodes (switches, routers, etc.)
are complex, a more systems-based approach
encompassing elements of simulation is required.
With the current programming interfaces on
much of today’s networking equipment, this is
difficult to achieve.

In addition, operational costs involved in pro-
visioning and managing large multivendor net-
works covering multiple technologies have been
increasing over recent years, while the predomi-
nant trend in revenue for operations has been
decreasing. Coupled with increasing scarcity of

human resources and increasing costs of real
estate, this “perfect storm” for service providers
is leading to renewed interest in solutions that
can unify network management and provisioning
across multiple domains. A new network model
is required to support this.

The term software-defined networking (SDN)
has been coined in recent years. However, the
concept behind SDN has been evolving since
1996, driven by the desire to provide user-con-
trolled management of forwarding in network
nodes. Implementations by research and industry
groups include Ipsilon (proposed General Switch
Management protocol, 1996), The Tempest (a
framework for safe, resource-assured, pro-
grammable networks, 1998) and Internet Engi-
neering Task Force (IETF) Forwarding and
Control Element Separation, 2000, and Path
Computation Element, 2004. Most recently,
Ethane (2007) and OpenFlow (2008) have
brought the implementation of SDN closer to
reality. Ethane is a security management archi-
tecture combining simple flow-based switches
with a central controller managing admittance
and routing of flows. OpenFlow enables entries
in the Flow Table to be defined by a server
external to the switch. SDN is not, however, lim-
ited to any one of these implementations, but is
a general term for the platform.

For clarity, SDN is described in this article
with the Open Networking Foundation (ONF)
[1] definition: “In the SDN architecture, the con-
trol and data planes are decoupled, network intelli-
gence and state are logically centralized, and the
underlying network infrastructure is abstracted
from the applications.”

SDN focuses on four key features:
• Separation of the control plane from the

data plane
• A centralized controller and view of the

network
• Open interfaces between the devices in the

control plane (controllers) and those in the
data plane
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• Programmability of the network by external
applications

Our vision of the future SDN architecture is
described in Fig. 1. This architecture encompass-
es the complete network platform.

The bottom tier of Fig. 1 involves the physical
network equipment including Ethernet switches
and routers. This forms the data plane. 

The central tier consists of the controllers
that facilitate setting up and tearing down flows
and paths in the network. The controllers use
information about capacity and demand obtained
from the networking equipment through which
the traffic flows. The central tier links with the
bottom tier via an application programming
interface (API) referred to as the southbound
API. Connections between controllers operate
with east and westbound APIs. The controller-
application interface is referred to as the north-
bound API.

Functional applications such as energy-effi-
cient networking, security monitoring, and access
control for operation and management of the
network are represented at the top of Fig. 1
highlighting the user control/management sepa-
ration from the data plane. An application in
this article refers to a service provided by the
network operator. Detailed insight into every
element of the architecture in Fig. 1 is beyond
the scope of this article. Instead, the transition
from the traditional network to the state of the
art in SDN today is presented.

A key challenge in SDN relates to separation
of the control and data planes, and maintaining
carrier grade service within this framework. The
architecture requirements to meet operational
expectations in carrier grade networks are scala-
bility, reliability, quality of service (QoS), and
service management [2]. Four specific questions

arising from the control-data plane separation
challenge are discussed later in this article. A
series of solutions to these identified issues are
then studied, and the article concludes with the
outline of our vision for the future of SDN.

BACKGROUND: WHY SDN?
The fundamental purpose of the communication
network is to transfer information from one
point to another. Within the network the data
travels across multiple nodes, and efficient and
effective data transfer (forwarding) is supported
by the control provided by network applica-
tions/services.

NETWORKING THE OLD WAY
In traditional networks, as shown in Fig. 2, the
control and data planes are combined in a net-
work node.

The control plane is responsible for configu-
ration of the node and programming the paths
to be used for data flows. Once these paths have
been determined, they are pushed down to the
data plane. Data forwarding at the hardware
level is based on this control information.

In this traditional approach, once the flow
management (forwarding policy) has been defined,
the only way to make an adjustment to the policy
is via changes to the configuration of the devices.
This has proven restrictive for network operators
who are keen to scale their networks in response
to changing traffic demands, increasing use of
mobile devices, and the impact of “big data.”

NETWORKING THE SDN WAY
From these service-focused requirements, SDN
has emerged. Control is moved out of the indi-
vidual network nodes and into the separate, cen-

Figure 1. SDN functional architecture illustrating the infrastructure, control, and application elements of
which the network is comprised.
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tralized controller. SDN switches are controlled
by a network operating system (NOS) that col-
lects information using the API shown in Fig. 2a
and manipulates their forwarding plane, provid-
ing an abstract model of the network topology to
the SDN controller hosting the applications.

The controller can therefore exploit complete
knowledge of the network to optimize flow man-
agement and support service-user requirements
of scalability and flexibility. For example, band-
width can be dynamically allocated into the data
plane from the application.

In Fig. 3, once the first packet of a new flow
arrives at the switch from the sender (step 1), the
switch checks for a flow rule for this packet in
the SDN cache (step 2). If a matching entry is
found, the instructions associated with the specif-
ic flow entry are executed (e.g., update counter,
packet/match fields, action set, metadata). Pack-
ets are then forwarded to the receiver (step 5).

If no match is found in the flow table, the
packet may be forwarded to the controller over
a secure channel (step 3). Using the southbound
API (e.g., OpenFlow, ForCES, PCEP), the con-
troller can add, update, and delete flow entries,
both reactively (in response to packets) and
proactively. The controller executes the routing
algorithm, and adds a new forwarding entry to
the flow table in the switch and to each of the
relevant switches along the flow path (step 4).
The switch then forwards the packet to the
appropriate port to send the packet to the receiv-
er (step 5).

WHERE DOES SDN TAKE US?
SDN implementation opens up a means for new
innovation and new applications. Dynamic topol-
ogy control (i.e., adjusting switch usage depend-
ing on load and traffic mapping) becomes
possible with the global network view. This
introduces scope for network-wide access con-
trol, power management, and home networking,
for which the network view is not beneficial but
absolutely necessary.

Furthermore, the network programmability
possible in SDN allows seamless communication
at all levels, from hardware to software and ulti-
mately to end users (network operators). Pro-
grammability makes applications aware of the
network and the network aware of applications.
This enables greatly improved use of resources
and opens up the potential for new applications
with the associated potential for revenue genera-
tion (e.g., flow metering) in which cost plans can
be defined based on a level of service provision.

KEY CHALLENGES
SDN holds great promise in terms of simplifying
network deployment and operation along with
lowering the total cost of managing enterprise
and carrier networks by providing programmable
network services. However, a number of chal-
lenges remain to be addressed. This section
focuses on four specific questions arising from
the challenges of SDN.

PERFORMANCE VS. FLEXIBILITY: HOW CAN THE
PROGRAMMABLE SWITCH BE ACHIEVED?

One fundamental challenge of SDN is how to
handle high-touch high-security high-perfor-
mance packet processing flows in an efficient
manner. There are two elements to consider:
performance and programmability/flexibility.

In this section, performance refers specifically
to the processing speed of the network node
considering both throughput and latency. Pro-
grammability means the capability to change
and/or accept a new set of instructions in order
to alter functional behavior. Flexibility is the
ability to adapt systems to support new unfore-
seen features (e.g., applications, protocols, secu-
rity measures).

There are a number of initiatives [3, 4] under-
way to allow programmability of existing net-
work technologies in a manner conformant with
the goals of SDN. Beyond these, the SDN pro-

Figure 2. Traditional network view compared with SDN network view: a) traditional approach (each net-
work node has its own control and management plane); b) SDN approach (the control plane is extracted
from the network node).
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grammability and performance problem remains
a challenge to achieve node bandwidth beyond
100 Gb/s.

Figure 4 outlines the main technologies used
for network processing in terms of their relation-
ship (trade-off) between programmability/flexi-
bility and performance.

General-purpose processors (CPUs/GPPs)
provide the highest flexibility. High-level pro-
gramming languages and design tools enable the
highest design abstraction and the rapid devel-
opment of complex packet processing functions.
The limitation of CPU implementation, howev-
er, is its performance and power dissipation,
constrained by the general-purpose architecture.
Nevertheless, multicore processors such as those
of the Intel Xeon family [5] can achieve several
tens of gigabits of throughput by load balancing
traffic onto multiple cores.

Network flow processors (NPUs/NFPs) are
optimized processor architectures for network
processing. Instructions and interconnects are
tailored for processing packetized data. Dedicat-
ed hardware accelerators and various interface
technologies are used for acceleration while
reducing power dissipation. However, the flexi-
bility of implementation is reduced as more
detailed knowledge of the device is required in
order to define the packet/flow processing func-
tion and take full advantage of the device’s par-
allel processing capabilities. State-of-the-art
NPUs (e.g., Netronome [6]) promise flow pro-
cessing performance of over 200 Gb/s line rate
per device and well over 100 Mpackets/s.

Programmable logic devices (PLDs) or field
programmable gate arrays (FPGAs) have
evolved into a technology for telecommunication
and network processing. In comparison to micro-
processors, PLDs are configured using hardware
design tools. This technology is ideal for imple-
menting highly parallel and pipelined data paths

that are tailored for individual network process-
ing functions. PLD technologies (e.g., Tabula
[7]) can achieve custom data path processing of
over 200 Gb/s per device (e.g., 200 Mpackets/s
switching).

Application-specific standard products
(ASSPs) are the cornerstone of high-perfor-
mance networks. They are designed and opti-
mized for widely used functions or products
aiming for high volume. The drawback of ASSPs
is their limited flexibility. Core ASSP domains
are physical and data link layer products, switch-
ing, and wireless products. In recent years, SDN-
specific ASSPs have been introduced by Intel,
Broadcom, and Marvell targeting primarily high-
performance Ethernet switching with virtualiza-
tion and OpenFlow support for over 500 Gb/s
switching.

Application-specific integrated circuits
(ASICs) are proprietary devices custom-built by
system vendors (e.g., Cisco, Huawei, Juniper)
when standard products are unavailable and pro-
grammable solutions are unable to meet perfor-
mance constraints. As an application-specific
solution, ASICs offer the lowest flexibility while
providing the highest performance, power, and
cost benefits. SDN products are expected to
comprise proprietary ASICs to implement the
SDN data plane.

Taking into account the programmability/per-
formance trade-off of data processing technolo-
gies, it is evident that only a hybrid approach will
provide an effective technology solution for
SDN. Main SDN node functions can be decom-
posed into clusters of subfunctions such that fea-
ture-specific technologies (within or across
nodes) are used to satisfy the best performance
vs. programmability trade-off in terms of power
dissipation, cost, and scalability.

For example, building a platform based on
custom-built devices (e.g., PLDs/ASSPs) com-

Figure 3. The operation of SDN (controller-switch).
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bined with NPUs/NFPs and a CPU/GPP pre-
sents a hybrid programmable architecture. Such
a platform can support fast forwarding on estab-
lished flows in the network along with pro-
grammability and controlled processing for
encapsulated traffic and new flows.

One goal of SDN is to develop networks built
on general-purpose hardware. The combination
of technologies as described in the hybrid archi-
tecture supports this goal. With a programmable
interface built on standard hardware, a multiven-
dor equipped network becomes a possibility.

SCALABILITY: HOW CAN THE CONTROLLER
BE ENABLED TO PROVIDE A
GLOBAL NETWORK VIEW?

Assuming that the performance requirements
can be achieved within the hybrid programmable
architecture, a further issue that has seen some
discussion but limited solution is scalability in
SDN.

The issue can loosely be split into controller
scalability and network node scalability. The
focus here is on controller scalability in which
three specific challenges are identified. The first
is the latency introduced by exchanging network
information between multiple nodes and a single
controller. The second is how SDN controllers
communicate with other controllers using the
east and westbound APIs. The third challenge is
the size and operation of the controller back-end
database.

Considering the first issue, a distributed or
peer-to-peer controller infrastructure would share
the communication burden of the controller.
However, this approach does not eliminate the
second challenge of controller-to-controller inter-
actions, for which an overall network view is
required.

Traditional packet networks lend themselves
to scalable solutions because they do not require
extensive state to be held between system units.
Each network node is autonomous, requiring
only limited knowledge of its neighbors. Routing
protocols have been designed to control traffic
with this in mind. In order to create resilient
networks, alternative paths and secondary equip-
ment are required. It may then be necessary to

hold some state between systems to ensure that
should a failure occur, there is little or no inter-
ruption in service. Typical systems that require
this functionality include network elements such
as load balancers and firewalls.

Within a pure SDN environment, a single
controller or group of controllers would provide
control plane services for a wider number of
data forwarding nodes, thus allowing a system-
wide view of network resources.

Other approaches that match the goals of
SDN with existing routing protocols involve
addition of an orchestration layer exposing an
API that application elements may use to request
desired performance from the transport layer.

An extension to the application layer traffic
optimization (ALTO) data model has been pro-
posed by various organizations in which the
ALTO server hosts aggregated information to
which each controller has a link. The goal of
ALTO is to guide applications in their selection
of one of several hosts capable of providing the
desired resource. A vertical architecture with
bidirectional information flow between each
SDN controller and the ALTO server is pro-
posed in [8] to support the global network view.
In terms of improving application performance,
ALTO with SDN would be a powerful tool.

A specific solution to controller scalability is
HyperFlow [9]. HyperFlow is a controller appli-
cation that sits on the NOX controller and works
with an event propagation system. The Hyper-
Flow application selectively publishes events that
change the state of the system, and other con-
trollers replay all the published events to recon-
struct the state. By this means all the controllers
share the same consistent network-wide view.

Indeed, this concept of providing the network
view by distributing the state over multiple con-
trollers is highlighted in [10], in which a series of
solutions to controller scalability are described.
Onix [11] is a distributed control platform pro-
viding abstractions for partitioning and distribut-
ing network state onto multiple distributed
controllers. Notably, in [10], the authors con-
clude that the flexibility of SDN provides an
opportunity in terms of network manageability
and functional scalability.

On the way to achieving full scalability for
SDN, an evolutionary approach to network pro-
grammability will be necessary. For example,
with the hybrid architecture a volume of queries
can be resolved in the node CPU, which would
otherwise be transferred to the controller for
processing. This can potentially reduce the
database size at the controller and simultaneous-
ly reduce communication between the controller
and its nodes.

SECURITY: HOW CAN THE SOFTWARE-DEFINED
NETWORK BE PROTECTED FROM

MALICIOUS ATTACK?

There has been limited industry and research
community discussion to date on the security
issues associated with SDN. A greater focus on
security is therefore required if SDN is going to
be acceptable in broader deployment. Indeed, a
security working group has been set up within
Open Networking Foundation (ONF) with this

Figure 4. Network processing: performance vs. programmability.
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in mind. A number of issues are highlighted here
that underscore the need for further study and
development of security solutions.

Potential security vulnerabilities exist across
the SDN platform. At the controller-application
level, questions have been raised around authen-
tication and authorization mechanisms to enable
multiple organizations to access network
resources while providing the appropriate pro-
tection of these resources [12]. Not all applica-
tions require the same network privileges, and a
security model must be put in place to isolate
applications and support network protection.

One potential solution is role-based autho-
rization. FortNox [13] is proposed to resolve the
situation when a controller receives conflicting
flow rules from two different applications. Role-
based authorization alone, however, does not
present a solution for the complexity of SDN
requiring isolation of applications or resources.

The controllers are a particularly attractive
target for attack in the SDN architecture open
to unauthorized access and exploitation. Fur-
thermore, in the absence of a robust, secure con-
troller platform, it is possible for an attacker to
masquerade as a controller and carry out mali-
cious activities. In the past, such attacks have
targeted DNS servers (e.g., the Kaminsky DNS
attack [14]). Considerably greater damage could
be done by such an attack on an SDN controller.

A security technology such as transport layer
security (TLS) with mutual authentication
between the controllers and their switches can
mitigate these threats. Current specifications of
OpenFlow [1] describe the use of TLS. However,
the security feature is optional, and the standard
of TLS is not specified. A full security specifica-
tion for the controller-switch interface must be
defined to secure the connection and protect
data transmitted across it.

With a single controller controlling a set of
network nodes, implementation of authentica-
tion with TLS may provide the necessary securi-
ty. However, with multiple controllers
communicating with a single node or multiple
control processes communicating with a single
centralized controller, authorization and access
control becomes more complex. The potential
for unauthorized access increases, and could
lead to manipulation of the node configuration
and/or traffic through the node for malicious
intent.

One potential malicious attack is the denial
of service (DoS) attack. Within the operation of
SDN, as illustrated in Fig. 3, there are two
options for the handling of a new flow when no
flow match exists in the flow table. Either the
complete packet or a portion of the packet head-
er is transmitted to the controller to resolve the
query. With a large volume of network traffic,
sending the complete packet to the controller
would absorb high bandwidth.

However, if only header information is trans-
mitted to the controller, the packet itself must
be stored in node memory until the flow table
entry is returned. In this case, it would be easy
for an attacker to execute a DoS attack on the
node by setting up a number of new and
unknown flows. As the memory element of the
node can be a bottleneck due to high cost, an

attacker could potentially overload the switch
memory.

Furthermore, with the introduction in SDN
of open interfaces and known protocols to sim-
plify network programming by any application
provider, the door is thrown open to attackers.
With full knowledge of how to control the net-
work, with access to the controller, the operation
of the network can quickly and easily be subvert-
ed to the benefit of the attacker. Even at a lower
level, individual network nodes, hosts, or users
could be targeted, undermining the desired net-
work performance. Such issues must receive due
consideration in the SDN platform design.

On the plus side, the SDN architecture sup-
ports a highly reactive security monitoring, anal-
ysis, and response system. From the security
perspective SDN can support:
• Network forensics: facilitate quick and

straightforward, adaptive threat identifica-
tion and management through a cycle of
harvesting intelligence from the network,
analyzing it, updating policy, and then
reprogramming to optimize from network
experience

• Security policy alteration: allow you to
define a security policy and have it pushed
out to all the infrastructure elements, reduc-
ing the frequency of misconfiguration and
conflicting policies across the infrastructure

• Security service insertion: facilitate security
service insertion where applications like
firewalls and intrusion detection systems
(IDSs) can be applied to specified traffic
according to the organization’s policies
However, the security of SDN will only be as

good as the defined security policy. Implementa-
tion of existing authentication and authorization
mechanisms can resolve some aspects of the
security challenge. Meanwhile, threat detection
and protection techniques will continue to
evolve. The key, though, is for individual organi-
zations to effectively and comprehensively define
their security policies in order to exploit the full
extent of available network protection.

INTEROPERABILITY: HOW CAN SDN SOLUTIONS
BE INTEGRATED INTO EXISTING NETWORKS? 

To answer this question requires consideration
of interoperability and standardization to sup-
port the transition from the traditional network
model to SDN.

It would be straightforward to deploy a com-
pletely new infrastructure based on SDN tech-
nology. For this, all elements and devices in the
network would be SDN-enabled. However, there
is a vast installed base of networks supporting
vital systems and businesses today. To simply
“swap out” these networks for new infrastructure
is not going to be possible, and is only well suit-
ed for closed environments such as data centers
and campus networks.

The transition to SDN therefore requires
simultaneous support of SDN and legacy equip-
ment. The IETF path computation element
(PCE) [15] could help in gradual or partial
migration to SDN. With PCE, the path compu-
tation component of the network is moved from
the networking node to a centralized role, while
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traditional network nodes not using PCE contin-
ue to use their existing path computation func-
tion. A specific protocol (PCEP) enables
communication between the network elements.
However, PCE does not provide complete SDN.
The centralized SDN controller supports com-
plete path computation for the flow across multi-
ple network nodes.

Further development is required to achieve
a hybrid SDN infrastructure in which tradi-
t ional ,  SDN-enabled,  and hybrid network
nodes can operate in harmony. Such interop-
erability requires the support of an appropri-
ate protocol that both introduces the
requirements for SDN communication inter-
faces and provides backward compatibility
with existing IP routing and multiprotocol
label switching (MPLS) control plane tech-
nologies. Such a solution would reduce the
cost, risk, and disruption for enterprise and
carrier networks transitioning to SDN.

Introducing a new protocol requires consid-
eration of standardization and where this stan-
dardization will  be of most benefit .  The
European Telecommunications Standards Insti-
tute (ETSI) Network Function Virtualisation
(NFV) Industry Specification Group [4] intends
to standardize components within the core net-
work that may be virtualized to provide effi-
cient scalabil ity and placement of those
services. IETF’s Forwarding and Control Ele-
ment Separation (ForCES) Working Group
has been working on standardizing interfaces,
mechanisms, and protocols with the goal of
separating the control plane from the forward-
ing plane of IP routers. ONF is standardizing
OpenFlow as a communication protocol within
the network and is driving the standards of
related protocols, such as the OpenFlow man-
agement and configuration protocol. Many
programming languages such as Frenetic and
Procera are also being proposed to resolve the
northbound API link.

The work of the IETF, ETSI, ONF, and other
industry working groups must be coordinated in
order to take advantage of existing standards in
networking while proposing and developing the
most effective standards to support migration
from the traditional network model to SDN.

CONCLUSION
SDN has emerged as a means to improve pro-
grammability within the network to support the
dynamic nature of future network functions. As
bandwidth demand escalates, the provision of
additional capabilities and processing power with
support for multiple 100GE channels will be
seamless through an SDN-based update and/or
upgrade. SDN promises flexibility, centralized
control, and open interfaces between nodes,
enabling an efficient, adaptive network.

In order to achieve this goal, a number of
outstanding challenges must be resolved. In this
article we have presented a discussion of a num-
ber of challenges in the area of performance,
scalability, security, and interoperability. Existing
research and industry solutions could resolve
some of these problems, and a number of work-
ing groups are also discussing potential solu-

tions. In addition to these, the hybrid pro-
grammable architecture could be a means to
counter performance and scalability issues intro-
duced by SDN. The objective of the model is to
optimize flow processing in the network.

The original data networks were formed out
of a combination of computing devices with data
and network nodes to transfer this data between
the source and destination. The ability to pro-
vide “X”-as-a-service (XaaS) through virtualiza-
tion technology has increased the volume of data
in the network. This has set a baseline for a new
communication method by pushing computation
into the network devices, increasing machine-to-
machine communications.

The future of networks will be shaped around
this progression. The goal is to provide effective
communications and services where network,
data, and computation are fused into a service
architecture. In the future, for a specific process,
data will request the computing, storage, and
connection it requires before launching the
application. The location of the network ele-
ments might be distributed physically and virtu-
ally, but this will be entirely opaque to the end
user. All the user will observe is the quality of
delivery of the requested service.

SDN will contribute to this vision of future
communications. However, significant issues
must be addressed in order to meet expecta-
tions. Indeed, consideration of the potential for
application-driven networks might lead us to
wonder whether SDN as currently envisioned is
even sufficient. Nevertheless, it is certain that
SDN is here to stay as an evolutionary step,
paving the way toward a highly optimized ubiq-
uitous service architecture.
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